
CSSS508, Week 9

Mapping

Chuck Lanfear

May 26, 2021

Updated: May 26, 2021

Today
Basic Mapping in ggplot2

Mapping with raw ggplot2 using coordinates
ggmap for mashing up maps with ggplot2
Labeling points and using ggrepel to avoid overlaps

Advanced Mapping

sf : Simple Features geometry for R
tidycensus and tigris for obtaining Census Bureau data and
shapefiles

2 / 46

https://en.wikipedia.org/wiki/Simple_Features

This is great if you are interested in
mapping, GIS, and geospatial
analysis in R--but new things are on
the way!.

RSpatial.org is also great.

You may also consider taking Jon
Wakefield's CSSS 554: Statistical
Methods for Spatial Data, however
it is challenging and focuses more
heavily on statistics than mapping.

CSDE offers workshops using QGIS
and/or ArcGIS. I recommend QGIS
because it is free software with an
extensive feature set.

Mapping in R: A quick plug

3 / 46

https://keen-swartz-3146c4.netlify.app/
http://rspatial.org/
https://csde.washington.edu/training/workshops/
https://qgis.org/en/site/

Basic Mapping
ggplot2 and ggmap

4 / 46

One Day of SPD Incidents
In Week 5, we looked at types of incidents the Seattle Police Department
responded to in a single day. Now, we'll look at where those were.

library(tidyverse)

spd_raw <- read_csv("https://clanfear.github.io/CSSS508/Seattle_Polic

5 / 46

Taking a glimpse()
glimpse(spd_raw)

Rows: 706
Columns: 19
$ `CAD CDW ID` <dbl> 1701856, 1701857, 1701853, 170~
$ `CAD Event Number` <dbl> 16000104006, 16000103970, 1600~
$ `General Offense Number` <dbl> 2016104006, 2016103970, 201610~
$ `Event Clearance Code` <chr> "063", "064", "161", "245", "2~
$ `Event Clearance Description` <chr> "THEFT - CAR PROWL", "SHOPLIFT~
$ `Event Clearance SubGroup` <chr> "CAR PROWL", "THEFT", "TRESPAS~
$ `Event Clearance Group` <chr> "CAR PROWL", "SHOPLIFTING", "T~
$ `Event Clearance Date` <chr> "03/25/2016 11:58:30 PM", "03/~
$ `Hundred Block Location` <chr> "S KING ST / 8 AV S", "92XX BL~
$ `District/Sector` <chr> "K", "S", "D", "M", "M", "B", ~
$ `Zone/Beat` <chr> "K3", "S3", "D2", "M1", "M3", ~
$ `Census Tract` <dbl> 9100.102, 11800.602, 7200.106,~
$ Longitude <dbl> -122.3225, -122.2680, -122.342~
$ Latitude <dbl> 47.59835, 47.51985, 47.61422, ~
$ `Incident Location` <chr> "(47.598347, -122.32245)", "(4~
$ `Initial Type Description` <chr> "THEFT (DOES NOT INCLUDE SHOPL~
$ `Initial Type Subgroup` <chr> "OTHER PROPERTY", "SHOPLIFTING~
$ `Initial Type Group` <chr> "THEFT", "THEFT", "TRESPASS", ~
$ `At Scene Time` <chr> "03/25/2016 10:25:51 PM", "03/~

6 / 46

Coordinates, such as longitude and
latitude, can be provided in aes()
as x and y values.

This is ideal when you don't need to
place points over some map for
reference.

ggplot(spd_raw,
 aes(Longitude, Latitude)) +
 geom_point() +
 coord_fixed() + # evenly spaces x and y
 ggtitle("Seattle Police Incidents",
 subtitle="March 25, 2016") +
 theme_classic()

Sometimes, however, we want to
plot these points over existing maps.

x,y as Coordinates

7 / 46

ggmap

8 / 46

ggmap
ggmap is a package that works with ggplot2 to plot spatial data directly on
map images downloaded from Google Maps1 and Stamen Maps (good
artistic/minimal options).

What this package does for you:

1. Queries servers for a map (get_map()) at the location and scale you want

2. Plots the raster (bitmap) image as a ggplot object

3. Lets you add more ggplot layers like points, 2D density plots, text
annotations

4. Additional functions for interacting with Google Maps (e.g. getting
distances by bike)

[1] Requires a Google API Key.

9 / 46

https://cloud.google.com/maps-platform/

Installation
We can install ggmap like other packages:

install.packages("ggmap")

Because the map APIs it uses change frequently, sometimes you may need to
get a newer development version of ggmap from the author's GitHub. This can
be done using the remotes package.

if(!requireNamespace("remotes")) install.packages("remotes")
remotes::install_github("dkahle/ggmap")

Note, this may require compilation on your computer.

library(ggmap)

10 / 46

qmplot will automatically set the
map region based on your data:

qmplot(data = spd_raw,
 x = Longitude,
 y = Latitude,
 color = I("#342c5c"),
 alpha = I(0.5))

All I provided was numeric latitude
and longitude, and it placed the data
points correctly on a raster map of
Seattle.

I() is used here to specify set
(constant) rather than mapped
values.

Quick Maps with qmplot()

11 / 46

get_map()
Both qmplot() and qmap() are wrappers for a function called get_map()
that retrieves a base map layer. Some options:

location= search query or numeric vector of longitude and latitude
zoom= a zoom level (3 = continent, 10 = city, 21 = building)
source=

"google" : Google Maps for general purpose maps1

"stamen" : Aesthetically pleasing alternatives based on
OpenStreetMaps

maptype=
Google types: "terrain" , "terrain-background" , "satellite" ,
"roadmap" , "hybrid"
Stamen types: "watercolor" , "toner" , "toner-background" ,
"toner-lite"

color= "color" or "bw"

[1] Requires API key!

12 / 46

Call qmplot() with no geom() , and
then add density layers:

qmplot(data = spd_raw, geom = "blank",
 x = Longitude, y = Latitude,
 maptype = "toner-lite",
 darken = 0.5) +
 stat_density_2d(
 aes(fill = stat(level)),
 geom = "polygon",
 alpha = .2, color = NA) +
 scale_fill_gradient2(
 "Incident\nConcentration",
 low = "white",
 mid = "yellow",
 high = "red") +
 theme(legend.position = "bottom")

stat(level) indicates we want
fill= to be based on level values
calculated by the layer.

Adding Density Layers

13 / 46

Labeling Points
Let's label the assaults and robberies specifically in downtown:

First filter to downtown based on values "eyeballed" from our earlier map:

downtown <- spd_raw %>%
 filter(Latitude > 47.58, Latitude < 47.64,
 Longitude > -122.36, Longitude < -122.31)

Then make a dataframe of just assaults and robberies:

assaults <- downtown %>%
 filter(`Event Clearance Group` %in%
 c("ASSAULTS", "ROBBERY")) %>%
 rename(assault_label = `Event Clearance Description`)

14 / 46

Labels
Now let's plot the events and label
them with geom_label()
(geom_text() without background
or border):

qmplot(data = downtown,
 x = Longitude,
 y = Latitude,
 maptype = "toner-lite",
 color = I("firebrick"),
 alpha = I(0.5)) +
 geom_label(data = assaults,
 aes(label = assault_label),
 size=2)

Placing the arguments for color=
and alpha= inside I() prevents
them from also applying to the
labels. We would get transparent red
labels otherwise!

15 / 46

ggrepel
You can also try
geom_label_repel() or
geom_text_repel() in the
ggrepel package to fix or reduce
overlaps (total space is limited here):

library(ggrepel)
qmplot(data =
 downtown,
 x = Longitude,
 y = Latitude,
 maptype = "toner-lite",
 color = I("firebrick"),
 alpha = I(0.5)) +
 geom_label_repel(
 data = assaults,
 aes(label = assault_label),
 fill = "black",
 color = "white",
 segment.color = "black",
 size=2)

16 / 46

Advanced Mapping
GIS and R with sf

17 / 46

Terminology
Simple Features (sf)

Coordinate Reference System (CRS)

Shapefile

18 / 46

sf
Until recently, the main way to work with geospatial data in R was through the
sp package. sp works well but does not store data the same way as most GIS
packages and can be bulky and complicated.

The more recent sf package implements the GIS standard of Simple
Features in R.

sf is also integrated into the tidyverse : e.g. geom_sf() in ggplot2 .

The package is somewhat new but is expected to replace sp eventually. The
principle authors and contributors to sf are the same authors as sp but with
new developers from the tidyverse as well.

Because sf is the new standard, we will focus on it today.

library(sf)

19 / 46

https://en.wikipedia.org/wiki/Simple_Features

Simple Features
A Simple Feature is a single observation with some defined geospatial
location(s). Features are stored in special data frames (class sf) with two
properties:

Geometry: Properties describing a location (usually on Earth).
Usually 2 dimensions, but support for up to 4.
Stored in a single reserved list-column (geom , of class sfc).1

Contain a defined coordinate reference system.

Attributes: Characteristics of the location (such as population).
These are non-spatial measures that describe a feature.
Standard data frame columns.

[1] A list-column is the same length as all other columns in the data, but each element
contains sub-elements (class sfg) with all the geometrical components.

List-columns require special functions to manipulate, including removing them.

20 / 46

https://en.wikipedia.org/wiki/Simple_Features

Coordinate Reference Systems
Coordinate reference systems (CRS) specify what location on Earth
geometry coordinates are relative to (e.g. what location is (0,0) when plotting).

The most commonly used is WGS84, the standard for Google Earth, the
Department of Defense, and GPS satellites.

There are two common ways to define a CRS in sf :

EPSG codes (epsg in R)

Numeric codes which refer to a predefined CRS
Example: WGS84 is 4326

PROJ.4 strings (proj4string in R)

Text strings of parameters that define a CRS
Example: NAD83(NSRS2007) / Washington North

+proj=lcc +lat_1=48.73333333333333 +lat_2=47.5 +lat_0=47
+lon_0=-120.8333333333333 +x_0=500000 +y_0=0 +ellps=GRS80
+towgs84=0,0,0,0,0,0,0 +units=m +no_defs

21 / 46

https://en.wikipedia.org/wiki/World_Geodetic_System
http://spatialreference.org/ref/epsg/
https://proj4.org/usage/quickstart.html

Shape�les
Geospatial data is typically stored in shapefiles which store geometric data as
vectors with associated attributes (variables)

Shapefiles actually consist of multiple individual files. There are usually at
least three (but up to 10+):

.shp : The feature geometries

.shx : Shape positional index

.dbf : Attributes describing features1

Often there will also be a .prj file defining the coordinate system.

[2] This is just a dBase IV file which is an ancient and common database storage file
format.

22 / 46

Using sf

23 / 46

Selected sf Functions
sf is a huge, feature-rich package. Here is a sample of useful functions:

st_read() , st_write() : Read and write shapefiles.

geom_sf() : ggplot() layer for sf objects.

st_as_sf() : Convert a data frame into an sf object.

st_join() : Join data by spatial relationship.

st_transform() : Convert between CRS.

st_drop_geometry() : Remove geometry from a sf data frame.

st_relate() : Compute relationships between geometries (like neighbor
matrices).

st_interpolate_aw() : Areal-weighted interpolation of polygons.1

[1] I recommend the dedicated areal package for this though!

24 / 46

Loading Data
We will work with the voting data from Homework 5. You can obtain a shape
file of King County voting precincts from the county GIS data portal.

We can load the file using st_read() .

precinct_shape <- st_read("./data/district/votdst.shp") %>%
 select(Precinct=NAME, geometry)

Reading layer `votdst' from data source `C:\Users\cclan\OneDrive\GitHub\CS
Simple feature collection with 2592 features and 5 fields
Geometry type: MULTIPOLYGON
Dimension: XY
Bounding box: xmin: 1220179 ymin: 31555.16 xmax: 1583562 ymax: 287678
Projected CRS: NAD83(HARN) / Washington North (ftUS)

If following along, click here to download a zip of the shapefile.

25 / 46

https://gis-kingcounty.opendata.arcgis.com/datasets/voting-districts-of-king-county--votdst-area
https://github.com/clanfear/CSSS508/raw/master/Lectures/Week9/data/district.zip

Voting Data: Processing
precincts_votes_sf <-
 read_csv("./data/king_county_elections_2016.txt") %>%
 filter(Race == "US President & Vice President" &
 str_detect(Precinct, "SEA ")) %>%
 select(Precinct, CounterType, SumOfCount) %>%
 group_by(Precinct) %>%
 filter(CounterType %in%
 c("Donald J. Trump & Michael R. Pence",
 "Hillary Clinton & Tim Kaine",
 "Registered Voters",
 "Times Counted")) %>%
 mutate(CounterType =
 recode(CounterType,
 `Donald J. Trump & Michael R. Pence` = "Trump",
 `Hillary Clinton & Tim Kaine` = "Clinton",
 `Registered Voters`= "RegisteredVoters",
 `Times Counted` = "TotalVotes")) %>%
 pivot_wider(names_from = CounterType,
 values_from = SumOfCount) %>%
 mutate(P_Dem = Clinton / TotalVotes,
 P_Rep = Trump / TotalVotes,
 Turnout = TotalVotes / RegisteredVoters) %>%
 select(Precinct, P_Dem, P_Rep, Turnout) %>%
 filter(!is.na(P_Dem)) %>%
 left_join(precinct_shape) %>%
 st_as_sf() # Makes sure resulting object is an sf dataframe

26 / 46

Taking a glimpse()
glimpse(precincts_votes_sf)

Rows: 960
Columns: 5
Groups: Precinct [960]
$ Precinct <chr> "SEA 11-1256", "SEA 11-1550", "SEA 11-1552", "SEA 1~
$ P_Dem <dbl> 0.7707510, 0.8168421, 0.7507987, 0.8376328, 0.83259~
$ P_Rep <dbl> 0.15612648, 0.07789474, 0.13418530, 0.08649469, 0.0~
$ Turnout <dbl> 0.6931507, 0.7274119, 0.7347418, 0.7522831, 0.75792~
$ geometry <MULTIPOLYGON [US_survey_foot]> MULTIPOLYGON (((1273698 1~

Notice the geometry column and its unusual class: MULTIPOLYGON

A single observation (row) has a geometry which may consist of multiple
polygons.

27 / 46

Voting Map
We can plot sf geometry using
geom_sf() .

ggplot(precincts_votes_sf,
 aes(fill = P_Dem)) +
 geom_sf(size = NA) +
 theme_void() +
 theme(legend.position =
 "bottom")

fill=P_Dem maps color inside
precincts to P_Dem .
size=NA removes precinct
outlines.
theme_void() removes axes
and background.

28 / 46

tidycensus

29 / 46

tidycensus
tidycensus can be used to search the American Community Survey (ACS)
and Dicennial Census for variables, then download them and automatically
format them as tidy dataframes.

These dataframes include geographical boundaries such as tracts!

This package utilizes the Census API, so you will need to obtain a Census API
key.

Application Program Interface (API): A type of computer interface that
exists as the "native" method of communication between computers, often via
http (usable via httr package).

R packages that interface with websites and databases typically use APIs.
APIs make accessing data easy while allowing websites to control access.

See the developer's GitHub page for detailed instructions.

30 / 46

https://api.census.gov/data/key_signup.html
https://walkerke.github.io/tidycensus/articles/basic-usage.html

Key tidycensus Functions
census_api_key() - Install a census api key.

Note you will need to run this prior to using any tidycensus
functions.

load_variables() - Load searchable variable lists.

year = : Sets census year or endyear of 5-year ACS
dataset = : Sets dataset (see ?load_variables)

get_decennial() - Load Census variables and geographical boundaries.

variables = : Provide vector of variable IDs
geography = : Sets unit of analysis (e.g. state , tract , block)
year = : Census year (1990 , 2000 , or 2010)
geometry = TRUE : Returns sf geometry

get_acs() - Load ACS variables and boundaries.

31 / 46

Searching for Variables
library(tidycensus)
census_api_key("PUT YOUR KEY HERE", install=TRUE)
acs_2015_vars <- load_variables(2015, "acs5")
acs_2015_vars[10:18,] %>% print()

A tibble: 9 x 3
name label concept
<chr> <chr> <chr>
1 B01001_008 Estimate!!Total!!Male!!20 years SEX BY AGE
2 B01001_009 Estimate!!Total!!Male!!21 years SEX BY AGE
3 B01001_010 Estimate!!Total!!Male!!22 to 24 years SEX BY AGE
4 B01001_011 Estimate!!Total!!Male!!25 to 29 years SEX BY AGE
5 B01001_012 Estimate!!Total!!Male!!30 to 34 years SEX BY AGE
6 B01001_013 Estimate!!Total!!Male!!35 to 39 years SEX BY AGE
7 B01001_014 Estimate!!Total!!Male!!40 to 44 years SEX BY AGE
8 B01001_015 Estimate!!Total!!Male!!45 to 49 years SEX BY AGE
9 B01001_016 Estimate!!Total!!Male!!50 to 54 years SEX BY AGE

32 / 46

Getting Data
king_county <- get_acs(geography = "tract", state = "WA",
 county = "King", geometry = TRUE,
 variables = c("B02001_001E",
 "B02009_001E"),
 output = "wide")

What do these look like?

glimpse(king_county)

Rows: 398
Columns: 7
$ GEOID <chr> "53033011300", "53033004900", "53033026801", "53~
$ NAME <chr> "Census Tract 113, King County, Washington", "Ce~
$ B02001_001E <dbl> 6656, 7489, 6056, 3739, 3687, 3854, 4362, 3991, ~
$ B02001_001M <dbl> 447, 605, 642, 192, 236, 271, 388, 430, 442, 286~
$ B02009_001E <dbl> 951, 66, 571, 189, 141, 54, 757, 302, 1058, 163,~
$ B02009_001M <dbl> 370, 61, 432, 123, 141, 76, 449, 266, 384, 170, ~
$ geometry <MULTIPOLYGON [°]> MULTIPOLYGON (((-122.3551 4..., MUL~

With output="wide" , estimates end in E and error margins in M .

33 / 46

Processing Data
We can drop the margins of error, rename the estimates then, mutate() into
a proportion Any Black measure.

king_county <- king_county %>%
 select(-ends_with("M")) %>%
 rename(`Total Population`= B02001_001E,
 `Any Black` = B02009_001E) %>%
 mutate(`Any Black` = `Any Black` / `Total Population`)
glimpse(king_county)

Rows: 398
Columns: 5
$ GEOID <chr> "53033011300", "53033004900", "5303302680~
$ NAME <chr> "Census Tract 113, King County, Washingto~
$ `Total Population` <dbl> 6656, 7489, 6056, 3739, 3687, 3854, 4362,~
$ `Any Black` <dbl> 0.142878606, 0.008812926, 0.094286658, 0.~
$ geometry <MULTIPOLYGON [°]> MULTIPOLYGON (((-122.3551 4.~

34 / 46

Mapping Code
king_county %>%
 ggplot(aes(fill = `Any Black`)) +
 geom_sf(size = NA) +
 coord_sf(crs = "+proj=longlat +datum=WGS84", datum = NA) +
 scale_fill_continuous(name = "Any Black\n",
 low = "#d4d5f9",
 high = "#00025b") +
 theme_minimal() + ggtitle("Proportion Any Black")

New functions:

geom_sf() draws Simple Features coordinate data.
size = NA removes outlines

coord_sf() is used here with these arguments:
crs : Modifies the coordinate reference system (CRS); WGS84 is
possibly the most commonly used CRS.
datum=NA : Removes graticule lines, which are geographical lines
such as meridians and parallels.

35 / 46

36 / 46

Removing Water
With a simple function and boundaries of water bodies in King County, we
can replace water with empty space.

st_erase <- function(x, y) {
 st_difference(x, st_make_valid(st_union(st_combine(y))))
}
kc_water <- tigris::area_water("WA", "King", class = "sf")
kc_nowater <- king_county %>%
 st_erase(kc_water)

st_combine() merges all geometries into one
st_union() resolves internal boundaries
st_difference() subtracts y geometry from x
st_make_valid() fixes geometry errors from subtraction
area_water() obtains sf geometry of water bodies

Then we can reproduce the same plot using kc_nowater ...

37 / 46

38 / 46

State Example Data
Let's do this again, but for the entire state of Illinois.

pb_state <-
 get_acs(geography = "tract", state = "IL",
 geometry = TRUE,
 variables = c("B02001_001E",
 "B02009_001E"),
 output = "wide") %>%
 select(-ends_with("M")) %>%
 rename(`Total Population`=B02001_001E,
 `Any Black`=B02009_001E) %>%
 mutate(`Any Black` = `Any Black` / `Total Population`)

39 / 46

State Example Plot
pb_state %>%
 ggplot(aes(fill = `Any Black`)) +
 geom_sf(size = NA) +
 coord_sf(crs = "+proj=longlat +datum=WGS84", datum=NA) +
 scale_fill_continuous(name = "Any Black\n",
 low = "#d4d5f9",
 high = "#00025b") +
 theme_minimal()

40 / 46

41 / 46

Multiple geom_sf Layers
As with other ggplot2 layers, we can add additional geom_sf() layers using
new data.

This is useful for...

Adding points
Cities in states
Crimes in police beats

Adding lines
Street grids over tracts

Adding outlines or highlights
Elevation contours
Showing urban boundaries

42 / 46

Add Urban Outlines
We can use tigris to download urban boundaries and add them to our prior
map.

urbans <- tigris::urban_areas(cb = TRUE, class = "sf")
glimpse(urbans)

Rows: 3,601
Columns: 9
$ UACE10 <chr> "18856", "83116", "79363", "96670", "97750", "574~
$ AFFGEOID10 <chr> "400C100US18856", "400C100US83116", "400C100US793~
$ GEOID10 <chr> "18856", "83116", "79363", "96670", "97750", "574~
$ NAME10 <chr> "Colorado Springs, CO", "South Bend, IN--MI", "Sa~
$ LSAD10 <chr> "75", "75", "75", "75", "75", "76", "75", "75", "~
$ UATYP10 <chr> "U", "U", "U", "U", "U", "C", "U", "U", "U", "C",~
$ ALAND10 <dbl> 486995256, 417310226, 137815683, 835565506, 34223~
$ AWATER10 <dbl> 962957, 8281569, 141396, 6442279, 1377397, 151536~
$ geometry <MULTIPOLYGON [°]> MULTIPOLYGON (((-104.6051 3..., MULT~

urban_il <- urbans %>% filter(str_detect(NAME10, "IL"))

43 / 46

With Urban Outlines
pb_state %>%
 ggplot(aes(fill=`Any Black`)) +
 geom_sf(size = NA) +
 geom_sf(data = urban_il, color = "black",
 fill = NA, size = 0.1, inherit.aes=FALSE) +
 coord_sf(crs = "+proj=longlat +datum=WGS84", datum=NA) +
 scale_fill_continuous(name = "Any Black\n",
 low = "#d4d5f9",
 high = "#00025b") +
 theme_minimal()

We add the urban_il data as a new layer:

fill=NA removes the polygon fill
size=0.1 and color="black" give a thin outline

44 / 46

45 / 46

Optional Exercise
Use the HW 7 template to practice making maps of the restaurant inspection
data.

If you wish to submit it for bonus points, turn it in via Canvas by 11:59 PM
next Tuesday.

46 / 46

