
CSSS508, Week 8

Strings

Chuck Lanfear

May 19, 2021

Updated: May 18, 2021

Data Today
We'll use data on food safety inspections in King County from
data.kingcounty.gov.

Note these data are fairly large. You may want to save them and load them
from a local directory.

library(tidyverse)
restaurants <-
 read_csv("https://clanfear.github.io/CSSS508/Lectures/Week8/restaurants.csv",
 col_types = "ccccccccnnccicccciccciD")

I recommend specifying the column types so they read in correctly.

2 / 39

https://data.kingcounty.gov/Health/Food-Establishment-Inspection-Data/f29f-zza5

glimpse(restaurants)

Rows: 258,630
Columns: 23
$ Name <chr> "@ THE SHACK, LLC ", "10 MERCER R~
$ Program_Identifier <chr> "SHACK COFFEE", "10 MERCER RESTAU~
$ Inspection_Date <chr> NA, "01/24/2017", "01/24/2017", "~
$ Description <chr> "Seating 0-12 - Risk Category I",~
$ Address <chr> "2920 SW AVALON WAY", "10 MERCER ~
$ City <chr> "Seattle", "Seattle", "Seattle", ~
$ Zip_Code <chr> "98126", "98109", "98109", "98109~
$ Phone <chr> "(206) 938-5665", NA, NA, NA, NA,~
$ Longitude <dbl> -122, -122, -122, -122, -122, -12~
$ Latitude <dbl> 47.6, 47.6, 47.6, 47.6, 47.6, 47.~
$ Inspection_Business_Name <chr> NA, "10 MERCER RESTAURANT", "10 M~
$ Inspection_Type <chr> NA, "Routine Inspection/Field Rev~
$ Inspection_Score <int> NA, 10, 10, 10, 15, 15, 15, 0, 15~
$ Inspection_Result <chr> NA, "Unsatisfactory", "Unsatisfac~
$ Inspection_Closed_Business <chr> NA, "false", "false", "false", "f~
$ Violation_Type <chr> NA, "blue", "blue", "red", "blue"~
$ Violation_Description <chr> NA, "4300 - Non-food contact surf~
$ Violation_Points <int> 0, 3, 2, 5, 5, 5, 5, 0, 5, 10, 25~
$ Business_ID <chr> "PR0048053", "PR0049572", "PR0049~
$ Inspection_Serial_Num <chr> NA, "DAHSIBSJT", "DAHSIBSJT", "DA~
$ Violation_Record_ID <chr> NA, "IV43WZVLN", "IVCQ1ZIV0", "IV~
$ Grade <int> NA, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,~
$ Date <date> NA, 2017-01-24, 2017-01-24, 2017~

3 / 39

Strings
A general programming term for a unit of character data is a string, which is
defined as a sequence of characters. In R the terms "strings" and "character
data" are mostly interchangeable.

In other languages, "string" often also refers to a sequence of numeric
information, such as binary strings (e.g. "01110000 01101111 01101111
01110000"). We rarely use these in R.

Note that these are sequences of numbers rather than single numbers, and
thus strings.

One thing that separates a string from a number is that the leading zeroes are
meaningful: 01 != 1

4 / 39

String Basics

5 / 39

nchar()
We've seen the nchar() function to get the number of characters in a string.
How many characters are in the ZIP codes?

restaurants %>%
 mutate(ZIP_length = nchar(Zip_Code)) %>%
 count(ZIP_length)

A tibble: 2 x 2
ZIP_length n
<int> <int>
1 5 258629
2 10 1

6 / 39

substr()
You should be familiar with substr() from the homeworks. We can use it to
pull out just the first 5 digits of the ZIP code.

restaurants <- restaurants %>%
 mutate(ZIP_5 = substr(Zip_Code, 1, 5))
restaurants %>% distinct(ZIP_5) %>% head()

A tibble: 6 x 1
ZIP_5
<chr>
1 98126
2 98109
3 98101
4 98032
5 98102
6 98004

7 / 39

paste()
We can combine parts of strings together using the paste() function, e.g. to
make a whole mailing address:

restaurants <- restaurants %>%
 mutate(mailing_address =
 paste(Address, ", ", City, ", WA ", ZIP_5, sep = ""))
restaurants %>% distinct(mailing_address) %>% head()

A tibble: 6 x 1
mailing_address
<chr>
1 2920 SW AVALON WAY, Seattle, WA 98126
2 10 MERCER ST, Seattle, WA 98109
3 1001 FAIRVIEW AVE N Unit 1700A, SEATTLE, WA 98109
4 1225 1ST AVE, SEATTLE, WA 98101
5 18114 E VALLEY HWY, KENT, WA 98032
6 121 11TH AVE E, SEATTLE, WA 98102

8 / 39

paste0()
paste0() is a shortcut for paste() without any separator.

paste(1:5, letters[1:5]) # sep is a space by default

[1] "1 a" "2 b" "3 c" "4 d" "5 e"

paste(1:5, letters[1:5], sep ="")

[1] "1a" "2b" "3c" "4d" "5e"

paste0(1:5, letters[1:5])

[1] "1a" "2b" "3c" "4d" "5e"

9 / 39

paste() Practice
sep= controls what happens when doing entry-wise squishing of vectors you
give to paste() , while collapse= controls if/how they go from a vector to a
single string.

Here are some examples; make sure you understand how each set of
arguments produces its results:

paste(letters[1:5], collapse = "!")
paste(1:5, letters[1:5], sep = "+")
paste0(1:5, letters[1:5], collapse = "???")
paste(1:5, "Z", sep = "*")
paste(1:5, "Z", sep = "*", collapse = " ~ ")

[1] "a!b!c!d!e"
[1] "1+a" "2+b" "3+c" "4+d" "5+e"
[1] "1a???2b???3c???4d???5e"
[1] "1*Z" "2*Z" "3*Z" "4*Z" "5*Z"
[1] "1*Z ~ 2*Z ~ 3*Z ~ 4*Z ~ 5*Z"

10 / 39

stringr

11 / 39

stringr
stringr is yet another R package from the Tidyverse (like ggplot2 , dplyr ,
tidyr , lubridate , readr).

It provides functions that:

Replace some basic string functions like paste() and nchar() in a way
that's a bit less touchy with missing values or factors
Remove whitespace or pad it out
Perform tasks related to pattern matching: Detect, locate, extract, match,
replace, split.

These functions use regular expressions to describe patterns
Base R and stringi versions for these exist but are harder to use

Conveniently, most stringr functions begin with "str_" to make RStudio
auto-complete more useful.

library(stringr)

12 / 39

stringr Equivalencies
str_sub() is like substr() but also lets you put in negative values to
count backwards from the end (-1 is the end, -3 is third from end):

str_sub("Washington", 1, -3)

[1] "Washingt"

str_c() ("string combine") is just like paste() but where the default is
sep = "" (like paste0())

str_c(letters[1:5], 1:5)

[1] "a1" "b2" "c3" "d4" "e5"

13 / 39

stringr Equivalencies
str_length() is equivalent to nchar() :

nchar("weasels")

[1] 7

str_length("weasels")

[1] 7

14 / 39

Changing Cases
str_to_upper() , str_to_lower() , str_to_title() convert cases, which
is often a good idea to do before searching for values:

head(unique(restaurants$City))

[1] "Seattle" "SEATTLE" "KENT" "BELLEVUE" "KENMORE" "Issaquah"

restaurants <- restaurants %>%
 mutate(across(c(Name, Address, City), ~str_to_upper(.)))
head(unique(restaurants$City))

[1] "SEATTLE" "KENT" "BELLEVUE" "KENMORE" "ISSAQUAH" "BURIEN"

15 / 39

str_trim() Whitespace
Extra leading or trailing whitespace is common in text data:

head(unique(restaurants$Name), 4)

[1] "@ THE SHACK, LLC " "10 MERCER RESTAURANT"
[3] "100 LB CLAM" "1000 SPIRITS"

Any character column is potentially affected. We can use the str_trim()
function in stringr to clean them up all at once:

restaurants <- restaurants %>%
 mutate(across(where(is.character), ~str_trim(.)))
head(unique(restaurants$Name), 4)

[1] "@ THE SHACK, LLC" "10 MERCER RESTAURANT"
[3] "100 LB CLAM" "1000 SPIRITS"

across(where(x), ~ y) applies function y to every column for which function x
returns TRUE .

16 / 39

Regular Expressions and

Pattern Matching

17 / 39

What are Regular

Expressions?
Regular expressions or regexes are how we describe patterns we are looking
for in text in a way that a computer can understand. We write an expression,
apply it to a string input, and then can do things with matches we find.

Literal characters are defined snippets to search for like SEA or 206

Metacharacters let us be flexible in describing patterns:

backslash \ , caret ^ , dollar sign $, period . , pipe | , question mark
? , asterisk * , plus sign + , parentheses (and) , square brackets [
and] , curly braces { and }
To treat a metacharacter as a literal character, you must escape it
with two preceding backslashs \\ , e.g. to match (206) including the
parentheses, you'd use \\(206\\) in your regex

18 / 39

str_detect()
I want to get inspections for coffee shops. I'll say a coffee shop is anything that
has "COFFEE", "ESPRESSO", or "ROASTER" in the name. The regex for this is
COFFEE|ESPRESSO|ROASTER because | is a metacharacter that means "OR".
Use the str_detect() function, which returns TRUE if it finds what you're
looking for and FALSE if it doesn't (similar to grepl()):

coffee <- restaurants %>%
 filter(str_detect(Name, "COFFEE|ESPRESSO|ROASTER"))
coffee %>% distinct(Name) %>% head()

A tibble: 6 x 1
Name
<chr>
1 2 SISTERS ESPRESSO
2 701 COFFEE
3 909 COFFEE AND WINE
4 AJ'S ESPRESSO
5 ALKI HOMEFRONT SMOOTHIES & ESPRESSO
6 ALL CITY COFFEE

19 / 39

Will My Coffee Kill Me?
Let's take each unique business identifier, keep the most recent inspection
score, and look at a histogram of scores:

coffee %>% select(Business_ID, Name, Inspection_Score, Date) %>%
 group_by(Business_ID) %>% filter(Date == max(Date)) %>%
 distinct(.keep_all=TRUE) %>% ggplot(aes(Inspection_Score)) +
 geom_histogram(bins=8) + xlab("Most recent inspection score") + ylab("") +
 ggtitle("Histogram of inspection scores for Seattle coffee shops")

20 / 39

str_detect(): Patterns
Let's look for phone numbers whose first three digits are "206" using
str_detect() .

We will want it to work whether they have parentheses around the beginning
or not, but NOT to match "206" occurring elsewhere:

area_code_206_pattern <- "^\\(?206"
phone_test_examples <- c("2061234567", "(206)1234567",
 "(206) 123-4567", "555-206-1234")
str_detect(phone_test_examples, area_code_206_pattern)

[1] TRUE TRUE TRUE FALSE

^ is a metacharacter meaning "look only at the beginning of the string"
\\(? means look for a left parenthesis (\\(), but it's optional (?)
206 is the literal string to look for after the optional parenthesis

21 / 39

str_view()
stringr also has a function called str_view() that allows you to see in the
viewer pane exactly what text is being selected with a regular expression.

str_view(phone_test_examples, area_code_206_pattern)

This will generate a small web page in the viewer pane (but not in Markdown
docs).

Just be careful to not load an entire long vector / variable or it may crash
RStudio as it tries to render a massive page!

22 / 39

str_detect()
Perhaps we want to know how many phone numbers aren't in the 206 area
code?

restaurants %>%
 mutate(has_206_number =
 str_detect(Phone, area_code_206_pattern)) %>%
 count(has_206_number)

A tibble: 3 x 2
has_206_number n
<lgl> <int>
1 FALSE 66655
2 TRUE 109099
3 NA 82876

str_detect() returns NA for rows with missing (NA) phone numbers--you
can't search for text in a missing value.

23 / 39

str_extract()
str_extract() extracts substrings that match a regex.

Let's extract the directional part of Seattle of addresses: N, NW, SE, none, etc.

direction_pattern <- " (N|NW|NE|S|SW|SE|W|E)(|$)"
direction_examples <- c("2812 THORNDYKE AVE W", "512 NW 65TH ST",
 "407 CEDAR ST", "15 NICKERSON ST")
str_extract(direction_examples, direction_pattern)

[1] " W" " NW " NA NA

The first space will match a space character, then
(N|NW|NE|S|SW|SE|W|E) matches one of the directions in the group
(|$) is a group saying either there is a space after, or it's the end of the
address string ($ means the end of the string)

24 / 39

https://en.wikipedia.org/wiki/Street_layout_of_Seattle#Directionals

Where are the Addresses?
restaurants %>%
 distinct(Address) %>%
 mutate(city_region =
 str_trim(str_extract(Address, direction_pattern))) %>%
 count(city_region) %>% arrange(desc(n))

A tibble: 9 x 2
city_region n
<chr> <int>
1 NE 2086
2 S 1764
3 <NA> 1745
4 N 879
5 SE 868
6 SW 705
7 E 538
8 NW 438
9 W 235

A common operation is to
str_extract() something with extra
spaces and then str_trim() them out.

25 / 39

str_replace(): Replacing
Maybe we want to do a street-level analysis of inspections (e.g. compare The
Ave to Pike Street). How can we remove building numbers?

number_pattern <- "^[0-9]*-?[A-Z]? (1/2)?"
number_examples <-
 c("2812 THORNDYKE AVE W", "1ST AVE", "10A 1ST AVE",
 "10-A 1ST AVE", "5201-B UNIVERSITY WAY NE",
 "7040 1/2 15TH AVE NW")
str_replace(number_examples, number_pattern, replacement = "")

[1] "THORNDYKE AVE W" "1ST AVE" "1ST AVE"
[4] "1ST AVE" "UNIVERSITY WAY NE" "15TH AVE NW"

We can also use the shortcut str_remove() :

str_remove(number_examples, number_pattern)

[1] "THORNDYKE AVE W" "1ST AVE" "1ST AVE"
[4] "1ST AVE" "UNIVERSITY WAY NE" "15TH AVE NW"

26 / 39

How Does the Building

Number regex Work?
Let's break down "^[0-9]*-?[A-Z]? (1/2)?" :

^[0-9] means look for a digit between 0 and 9 ([0-9]) at the beginning
(^)

* means potentially match more digits after that

-? means optionally (?) match a hyphen (-)

[A-Z]? means optionally match (?) a letter ([A-Z])

Then we match a space ()

(1/2)? optionally matches a 1/2 followed by a space since this is
apparently a thing with some address numbers

27 / 39

Removing Street Numbers
restaurants <- restaurants %>%
 mutate(street_only = str_remove(Address, number_pattern))
restaurants %>% distinct(street_only) %>% head(10)

A tibble: 10 x 1
street_only
<chr>
1 SW AVALON WAY
2 MERCER ST
3 FAIRVIEW AVE N UNIT 1700A
4 1ST AVE
5 E VALLEY HWY
6 11TH AVE E
7 112TH AVE NE #125
8 NE BOTHELL WAY
9 NW GILMAN BL C-08
10 NE 20TH ST STE 300

28 / 39

How About Units/Suites Too?
Getting rid of unit/suite references is tricky, but a decent attempt would be to
drop anything including and after "#", "STE", "SUITE", "SHOP", "UNIT":

unit_pattern <- " (#|STE|SUITE|SHOP|UNIT).*$"
unit_examples <-
 c("1ST AVE", "RAINIER AVE S #A", "FAUNTLEROY WAY SW STE 108",
 "4TH AVE #100C", "NW 54TH ST")
str_remove(unit_examples, unit_pattern)

[1] "1ST AVE" "RAINIER AVE S" "FAUNTLEROY WAY SW"
[4] "4TH AVE" "NW 54TH ST"

29 / 39

How'd the Unit regex Work?
Breaking down " (#|STE|SUITE|SHOP|UNIT).*$" :

First we match a space

(#|STE|SUITE|SHOP|UNIT) matches one of those words

.*$ matches any character (.) after those words, zero or more times (*),
until the end of the string ($)

30 / 39

Removing Units/Suites
restaurants <- restaurants %>%
 mutate(street_only =
 str_trim(str_remove(street_only, unit_pattern)))
restaurants %>% distinct(street_only) %>% head(11)

A tibble: 11 x 1
street_only
<chr>
1 SW AVALON WAY
2 MERCER ST
3 FAIRVIEW AVE N
4 1ST AVE
5 E VALLEY HWY
6 11TH AVE E
7 112TH AVE NE
8 NE BOTHELL WAY
9 NW GILMAN BL C-08
10 NE 20TH ST
11 S ORCAS ST

For serious work, we would want to also
look into special cases like "C-08" here.

31 / 39

Where Does Danger Lurk?
Let's get the number of 45+ point inspections occurring on every street.

restaurants %>%
 filter(Inspection_Score > 45) %>%
 distinct(Business_ID, Date, Inspection_Score, street_only) %>%
 count(street_only) %>%
 arrange(desc(n)) %>%
 head(n=5)

A tibble: 5 x 2
street_only n
<chr> <int>
1 UNIVERSITY WAY NE 108
2 S JACKSON ST 105
3 PACIFIC HWY S 90
4 NE 24TH ST 76
5 RAINIER AVE S 70

32 / 39

Splitting up Strings
You can split up strings using tidyr::separate() , seen in Week 5. Another
option is str_split() , which will split strings based on a pattern separating
parts and put these components in a list. str_split_fixed() will do that
but with a matrix instead (thus can't have varying numbers of separators):

head(str_split_fixed(restaurants$Violation_Description, " - ", n = 2))

[,1]
[1,] ""
[2,] "4300"
[3,] "4800"
[4,] "1200"
[5,] "4100"
[6,] "2120"
[,2]
[1,] ""
[2,] "Non-food contact surfaces maintained and clean"
[3,] "Physical facilities properly installed,..."
[4,] "Proper shellstock ID; wild mushroom ID; parasite destruction procedures for fish"
[5,] "Warewashing facilities properly installed,..."
[6,] "Proper cold holding temperatures (42 degrees F to 45 degrees F)"

33 / 39

Making Sentences
Maybe we have a report or website where we need text dynamically
generated from data.

Lets prep some recent scores first.

library(lubridate)
recent_scores <- restaurants %>%
 select(Name, Address, City,
 Inspection_Score, Inspection_Date) %>%
 filter(!is.na(Inspection_Score)) %>%
 group_by(Name) %>%
 arrange(desc(Inspection_Score)) %>%
 slice(1) %>%
 ungroup() %>%
 mutate_at(vars(Name, Address, City), ~ str_to_title(.)) %>%
 mutate(Inspection_Date = mdy(Inspection_Date)) %>%
 sample_n(3)

34 / 39

With paste()
We can give many arguments to string a sentence together.

library(scales) # for ordinal day text
recent_scores %>%
 mutate(text_desc =
 paste(Name,
 "is located at", Address, "in", City,
 "and received a score of", Inspection_Score, "on",
 month(Inspection_Date, label=TRUE, abbr=FALSE),
 paste0(ordinal(day(Inspection_Date)),","),
 paste0(year(Inspection_Date), "."))) %>%
 select(text_desc)

A tibble: 3 x 1
text_desc
<chr>
1 Supreme Bean Again is located at 14424 Ambaum Bl Sw in Burien and r~
2 Mandarin Garden is located at 40 E Sunset Way in Issaquah and recei~
3 Flapjacks Waffle House is located at 13806 1st Ave S in Burien and ~

35 / 39

With glue
Or we can use str_glue , paste() 's more sophisticated sibling which uses
the glue package. Variables and functions just go inside { } and you can
create temporary variables for convenience.

(score_text <- recent_scores %>%
 mutate(text_desc =
 str_glue("{Name} is located at {Address} in {City} ",
 "and received a score of {Inspection_Score} ",
 "on {month(when, label=TRUE, abbr=FALSE)} ",
 "{ordinal(day(when))}, {year(when)}.",
 when = Inspection_Date)) %>%
 select(text_desc))

A tibble: 3 x 1
text_desc
<glue>
1 Supreme Bean Again is located at 14424 Ambaum Bl Sw in Burien and r~
2 Mandarin Garden is located at 40 E Sunset Way in Issaquah and recei~
3 Flapjacks Waffle House is located at 13806 1st Ave S in Burien and ~

36 / 39

https://glue.tidyverse.org/

str_wrap() and \n
The previous output will work fine for in-line Markdown, but it runs off the
edge of the console. It also won't wrap in many tables and images.

We can add regular linebreaks using str_wrap() or manually with "\n" .

score_text %>%
 pull(text_desc) %>%
 str_wrap(width = 70) %>%
 paste0("\n\n") %>% # add two linebreaks as a paragraph break
 cat() # cat combines text and prints it

Supreme Bean Again is located at 14424 Ambaum Bl Sw in Burien and
received a score of 10 on January 24th, 2017.

Mandarin Garden is located at 40 E Sunset Way in Issaquah and received
a score of 72 on March 9th, 2007.

Flapjacks Waffle House is located at 13806 1st Ave S in Burien and
received a score of 45 on October 3rd, 2008.

37 / 39

Other Useful stringr
Functions
str_pad(string, width, side, pad) : Adds "padding" to any string to
make it a given minimum width.

str_subset(string, pattern) : Returns all elements that contain matches
of the pattern.

str_which(string, pattern) : Returns numeric indices of elements that
match the pattern.

str_replace_all(string, pattern, replacement) : Performs multiple
replacements simultaneously

str_squish(string) : Trims spaces around a string but also removes
duplicate spaces inside it.

38 / 39

Coming Up
Homework 6, Part 2 is due next week, and peer reviews due the week after.

39 / 39

