
CSSS508, Week 7

Vectorization and Functions

Chuck Lanfear

May 12, 2021

Updated: May 18, 2021

A Quick Aside

2 / 55

Visualize the Goal First
Before you can write effective code, you need to know exactly what you want
that code to produce.

Do I want a single value? A vector? List?
Do I want one observation per person? Person-year? Year?

Most programming problems can be reduced to having an unclear idea of
your end goal (or your beginning state).

If you know what you have (the data structure) and what you want, the
intermediate steps are usually obvious.

When in doubt, sketch the beginning state and the intended end state. Then
consider what translates the former into the latter in the least complicated
way.

If that seems complex, break it into more steps.

3 / 55

Vectorization

4 / 55

Example from Last Week
Remember when we tried find the mean for each variable in the swiss data?

The best solution is to just use colMeans() without even thinking about pre-
allocation or for() loops:

colMeans(swiss)

Fertility Agriculture Examination Education
70.1 50.7 16.5 11.0
Catholic Infant.Mortality
41.1 19.9

5 / 55

Vectorization Avoids Loops
Loops are very powerful and applicable in almost any situation.

They are also often slower and require writing more code than vectorized
commands.

Whenever possible, use existing vectorized commands like colMeans() or
dplyr functions.

Sometimes no functions exist to do what you need, so you'll be tempted to
write a loop.

This makes sense on a fast, one-time operation, on small data.

If your data are large or you're going to do it repeatedly, however, consider
writing your own functions!

6 / 55

Writing Functions

7 / 55

Examples of Existing

Functions
mean() :

Input: a vector
Output: a single number

dplyr::filter() :
Input: a data frame, logical conditions
Output: a data frame with rows removed using those conditions

readr::read_csv() :
Input: a file path, optionally variable names or types
Output: a data frame containing info read in from file

8 / 55

Why Write Your Own

Functions?
Functions can encapsulate actions you might perform often, such as:

Given a vector, compute some special summary stats
Given a vector and definition of "invalid" values, replace with NA
Templates for favorite ggplots used in reports
Defining a new logical operator

Advanced function applications (not covered in this class):

Parallel processing
Generating other functions
Making custom packages containing your functions

9 / 55

Simple Function
Let's look at a function that takes a vector as input and outputs a named
vector of the first and last elements:

first_and_last <- function(x) {
 first <- x[1]
 last <- x[length(x)]
 return(c("first" = first, "last" = last))
}

Test it out:

first_and_last(c(4, 3, 1, 8))

first last
4 8

10 / 55

Testing first_and_last
What if I give first_and_last() a vector of length 1?

first_and_last(7)

first last
7 7

Of length 0?

first_and_last(numeric(0))

first
NA

Maybe we want it to be a little smarter.

11 / 55

Checking Inputs
Let's make sure we get an error message when the vector is too small:

smarter_first_and_last <- function(x) {
 if(length(x) == 0L) { # specify integers with L
 stop("The input has no length!")
 } else {
 first <- x[1]
 last <- x[length(x)]
 return(c("first" = first, "last" = last))
 }
}

stop() ceases running the function and prints the text inside as an error message.

12 / 55

Testing Smarter Function
smarter_first_and_last(numeric(0))

Error in smarter_first_and_last(numeric(0)): The input has no length!

smarter_first_and_last(c(4, 3, 1, 8))

first last
4 8

13 / 55

Cracking Open Functions
If you type a function name without any parentheses or arguments, you can
see its contents:

smarter_first_and_last

function(x) {
if(length(x) == 0L) { # specify integers with L
stop("The input has no length!") #<<
} else {
first <- x[1]
last <- x[length(x)]
return(c("first" = first, "last" = last))
}
}
<environment: 0x00000148e60609d0>

You can also put your cursor over a function in your syntax and hit F2 .

14 / 55

Anatomy of a Function
NAME <- function(ARGUMENT1, ARGUMENT2=DEFAULT){
 BODY
 return(OUTPUT)
}

Name: What you assign the function to so you can use it later
You can have "anonymous" (no-name) functions

Arguments (aka inputs, parameters): things the user passes to the
function that affect how it works

e.g. x or na.rm in my_new_func <- function(x, na.rm =
FALSE) {...}
na.rm = FALSE is example of setting a default value: if user doesn't
say what na.rm is, it'll be FALSE
x , na.rm values won't exist in R outside of the function

Body: The actual operations inside the function.
Return Value: The output inside return() . Could be a vector, list, data
frame, another function, or even nothing

If unspecified, will be the last thing calculated (maybe not what you
want?)

15 / 55

Example: Reporting Quantiles
Maybe you want to know more detailed quantile information than
summary() gives you and with interpretable names.

Here's a starting point:

quantile_report <- function(x, na.rm = FALSE) {
 quants <- quantile(x, na.rm = na.rm,
 probs = c(0.01, 0.05, 0.10, 0.25, 0.5, 0.75, 0.90, 0.95, 0.99))
 names(quants) <- c("Bottom 1%", "Bottom 5%", "Bottom 10%", "Bottom 25%",
 "Median", "Top 25%", "Top 10%", "Top 5%", "Top 1%")
 return(quants)
}
quantile_report(rnorm(10000))

Bottom 1% Bottom 5% Bottom 10% Bottom 25% Median Top 25%
-2.34863 -1.64252 -1.28831 -0.65889 -0.00165 0.67332
Top 10% Top 5% Top 1%
1.28503 1.63437 2.27336

16 / 55

An Aside on Apply functions

17 / 55

Don't Loop, apply() Yourself Instead

Writing loops is challenging, particularly for new coders.

Loops also require writing a lot of code and are hard to troubleshoot.

But loops aren't the only way to iterate in R.

Like a loop, apply functions iterate over elements of objects, except:

They don't need preallocation--you can directly assign the output.
They must use a function

Nearly anything you can do with an explicit loop can be done more easily with
the apply family of functions

18 / 55

lapply(): List + Functions
lapply() is used to apply a function over a list of any kind (e.g. a data
frame) and return a list. This is a lot easier than preparing a for() loop!

lapply(swiss, FUN = quantile_report)

$Fertility
Bottom 1% Bottom 5% Bottom 10% Bottom 25% Median Top 25%
38.6 47.6 56.2 64.7 70.4 78.4
Top 10% Top 5% Top 1%
84.6 90.7 92.5

$Agriculture
Bottom 1% Bottom 5% Bottom 10% Bottom 25% Median Top 25%
4.19 15.65 17.36 35.90 54.10 67.65
Top 10% Top 5% Top 1%
76.82 84.81 87.95

$Examination
Bottom 1% Bottom 5% Bottom 10% Bottom 25% Median Top 25%
3.0 5.0 6.0 12.0 16.0 22.0
Top 10% Top 5% Top 1%
26.0 30.4 36.1

19 / 55

sapply(): Simple lapply()
A downside to lapply() is that lists are hard to work with. sapply()
simplifies the output by making each element a column in a matrix... usually:

sapply(swiss, FUN = quantile_report)

Fertility Agriculture Examination Education Catholic
Bottom 1% 38.6 4.19 3.0 1.46 2.21
Bottom 5% 47.6 15.65 5.0 2.00 2.45
Bottom 10% 56.2 17.36 6.0 3.00 2.83
Bottom 25% 64.7 35.90 12.0 6.00 5.20
Median 70.4 54.10 16.0 8.00 15.14
Top 25% 78.4 67.65 22.0 12.00 93.12
Top 10% 84.6 76.82 26.0 23.20 99.00
Top 5% 90.7 84.81 30.4 29.00 99.61
Top 1% 92.5 87.95 36.1 43.34 99.87
Infant.Mortality
Bottom 1% 12.8
Bottom 5% 15.6
Bottom 10% 16.4
Bottom 25% 18.1
Median 20.0
Top 25% 21.7
Top 10% 23.7
Top 5% 24.5
Top 1% 25.8

20 / 55

apply()
There is also apply() which works over matrices or data frames. You can
apply the function to each row (MARGIN = 1) or column (MARGIN = 2).

apply(swiss, MARGIN = 2, FUN = quantile_report)

Fertility Agriculture Examination Education Catholic
Bottom 1% 38.6 4.19 3.0 1.46 2.21
Bottom 5% 47.6 15.65 5.0 2.00 2.45
Bottom 10% 56.2 17.36 6.0 3.00 2.83
Bottom 25% 64.7 35.90 12.0 6.00 5.20
Median 70.4 54.10 16.0 8.00 15.14
Top 25% 78.4 67.65 22.0 12.00 93.12
Top 10% 84.6 76.82 26.0 23.20 99.00
Top 5% 90.7 84.81 30.4 29.00 99.61
Top 1% 92.5 87.95 36.1 43.34 99.87
Infant.Mortality
Bottom 1% 12.8
Bottom 5% 15.6
Bottom 10% 16.4
Bottom 25% 18.1
Median 20.0
Top 25% 21.7
Top 10% 23.7
Top 5% 24.5
Top 1% 25.8

21 / 55

Data Loading with Loop
Remember the loop for loading data files from last week?

library(dplyr); library(readr)
file_list <- list.files("./example_data/")
file_paths <- paste0("./example_data/", file_list)
data_names <- stringr::str_remove(file_list, ".csv")
data_list <- vector("list", length(file_list))
names(data_list) <- data_names
for (i in seq_along(file_list)){
 data_list[[data_names[i]]] <- read_csv(file_paths[i])
}
complete_data <- bind_rows(data_list)
head(complete_data, 3)

A tibble: 3 x 3
id x z
<dbl> <dbl> <dbl>
1 44 0.516 0.381
2 49 2.17 0.346
3 50 -0.122 0.711

22 / 55

Data Loading with lapply()
Another way to load these files would be to... lapply() over the file names
then bind the rows together. Faster and easier!

complete_data <- lapply(file_paths, read_csv) %>%
 bind_rows()
head(complete_data, 3)

A tibble: 3 x 3
id x z
<dbl> <dbl> <dbl>
1 44 0.516 0.381
2 49 2.17 0.346
3 50 -0.122 0.711

23 / 55

Data Loading with vroom
The fastest and easiest way is to use a fully vectorized data loading function,
like vroom::vroom() !

library(vroom)
complete_data <- vroom(file_paths)
head(complete_data, 3)

A tibble: 3 x 3
id x z
<dbl> <dbl> <dbl>
1 44 0.516 0.381
2 49 2.17 0.346
3 50 -0.122 0.711

Just give vroom() a vector of file locations and it determines their delimiter,
loads them all (crazy fast), and binds them into one dataframe.

24 / 55

From Loop to apply()
Converting code in a loop to an apply function is straightforward:

1. What you iterate over in the loop (e.g. seq_along(x)) becomes the first
input.

2. The body of the loop becomes a function.

This function should take only the iterator index (e.g. i) as an input.

3. Assign the output to what your loop stored values in.

25 / 55

Loop vs. Apply
loop_vec <- numeric(5) # Preallocation!
for(x in seq_along(loop_vec)){ # Change x to 1,2,3,4,5
 loop_vec[x] <- x^2 # Write x squared to loop_vec
}
loop_vec

[1] 1 4 9 16 25

seq_along(loop_vec) is just 1:5 , but we need the empty loop_vec to store
results.

No preallocation, just iterate over 1:5 and assign output!
apply_vec <- sapply(1:5, function(x){x^2})
apply_vec

[1] 1 4 9 16 25

For apply functions, we don't need to prellocate, so we just sapply() over
1:5 directly.

26 / 55

Back to Making and Using Functions!

27 / 55

Example: Discretizing

Continuous Data
Maybe you often want to bucket variables in your data into groups based on
quantiles:

Person Income Income Bucket

1 8000 1

2 103000 3

3 12000 1

4 52000 2

5 150000 3

6 45000 2

28 / 55

Bucketing Function
There's already a function in R called cut() that does this, but you need to
tell it breaks or the number of buckets.

Let's make a function that calls cut() using quantiles (quants) for splitting
and returns integers:

bucket <- function(x, quants = c(0.333, 0.667)) {
 # set low extreme, quantile points, high extreme
 new_breaks <- c(min(x)-1, quantile(x, probs = quants), max(x)+1)
 # labels = FALSE will return integer codes instead of ranges
 return(cut(x, breaks = new_breaks, labels = FALSE))
}

By default this will produce three buckets:

1. Anything below 33.3rd percentile
2. Anthing from 33.3rd to 66.7th
3. Anything above 66.7th

To capture all high/low values, we start
with min(x)-1 and end with max(x)+1 .

29 / 55

Trying Out bucket()
dat <- rnorm(100)
dat_quants <- c(0.05, 0.25, 0.5, 0.75, 0.95)
bucketed_dat <- bucket(dat, quants = dat_quants)
plot(x = bucketed_dat, y = dat, main = "Buckets and values", pch = 16)
abline(h = quantile(dat, dat_quants), lty = "dashed", col = "red")

30 / 55

Example: Removing Bad Data
Let's say we have data where impossible values occur:1

(school_data <-
 data.frame(school = letters[1:10],
 pr_passing_exam=c(0.78, 0.55, 0.91, -1, 0.88, 0.81, 0.90, 0.76, 99, 99),
 pr_free_lunch = c(0.33, 99, 0.25, 0.05, 0.12, 0.09, 0.22, -13, 0.21, 99)))

school pr_passing_exam pr_free_lunch
1 a 0.78 0.33
2 b 0.55 99.00
3 c 0.91 0.25
4 d -1.00 0.05
5 e 0.88 0.12
6 f 0.81 0.09
7 g 0.90 0.22
8 h 0.76 -13.00
9 i 99.00 0.21
10 j 99.00 99.00

[1] Different types of missing data are often coded this way in survey and
administrative data sets.

31 / 55

Function to Remove Extreme

Values
Goal:

Input: a vector x , cutoff for low , cutoff for high
Output: a vector with NA in the extreme places

remove_extremes <- function(x, low, high) {
 x_no_low <- ifelse(x < low, NA, x)
 x_no_low_no_high <- ifelse(x_no_low > high, NA, x)
 return(x_no_low_no_high)
}
remove_extremes(school_data$pr_passing_exam, low = 0, high = 1)

[1] 0.78 0.55 0.91 NA 0.88 0.81 0.90 0.76 NA NA

32 / 55

dplyr::across()
The dplyr function across() allows us to a function to every variable
(besides school) to update the columns in school_data :

library(dplyr)
school_data %>%
 mutate(across(-school, ~ remove_extremes(x = ., low = 0, high = 1)))

school pr_passing_exam pr_free_lunch
1 a 0.78 0.33
2 b 0.55 NA
3 c 0.91 0.25
4 d NA 0.05
5 e 0.88 0.12
6 f 0.81 0.09
7 g 0.90 0.22
8 h 0.76 NA
9 i NA 0.21
10 j NA NA

33 / 55

(Non-)Standard Evaluation
dplyr uses what is called non-standard evaluation that lets you refer to
"naked" variables (no quotes around them) like school .

dplyr verbs (like mutate()) recently started supporting standard
evaluation allowing you to use quoted object names as well. This makes
writing functions and loops with dplyr easier.

swiss %>%
 select("Fertility", "Catholic") %>%
 head(2)

Fertility Catholic
Courtelary 80.2 9.96
Delemont 83.1 84.84

34 / 55

Anonymous Functions in

dplyr
You can skip naming your function in dplyr if you won't use it again. Code
below will return the mean divided by the standard deviation for each
variable in swiss :

swiss %>%
 summarize(across(everything(), ~ mean(., na.rm=TRUE) / sd(., na.rm=TRUE)))

Fertility Agriculture Examination Education Catholic
1 5.62 2.23 2.07 1.14 0.987
Infant.Mortality
1 6.85

35 / 55

Anonymous lapply()
Like with dplyr , you can use anonymous functions in lapply()1, but a
difference is you'll need to have the function() part at the beginning:

lapply(swiss, function(x) mean(x, na.rm = TRUE) / sd(x, na.rm = TRUE))

$Fertility
[1] 5.62

$Agriculture
[1] 2.23

$Examination
[1] 2.07

$Education
[1] 1.14

$Catholic
[1] 0.987

[1] Note that lapply() produces a list as
output. You could instead use sapply()
to get a vector.

36 / 55

Extended Example:

ggplot2 Templates

37 / 55

Flexible ggplot2
Let's say you have a particular way you like your charts:

library(gapminder); library(ggplot2)
ggplot(gapminder %>% filter(country == "Afghanistan"),
 aes(x = year, y = pop / 1000000)) +
 geom_line(color = "firebrick") +
 xlab(NULL) + ylab("Population (millions)") +
 ggtitle("Population of Afghanistan since 1952") +
 theme_minimal() +
 theme(plot.title = element_text(hjust = 0, size = 20))

How could we make this flexible for any country?
How could we make this flexible for any gapminder variable?

38 / 55

Example of Desired Chart

39 / 55

Another Example

40 / 55

Making Country Flexible
We can have the user input a character string for cntry as an argument to
the function to get subsetting and the title right:

gapminder_lifeplot <- function(cntry) {
 ggplot(gapminder %>% filter(country == cntry),
 aes(x = year, y = lifeExp)) +
 geom_line(color = "firebrick") +
 xlab(NULL) + ylab("Life expectancy") + theme_minimal() +
 ggtitle(paste0("Life expectancy in ", cntry, " since 1952")) +
 theme(plot.title = element_text(hjust = 0, size = 20))
}

What cntry does:

filter() to the specific value of cntry

Add text value of cntry in ggtitle()

41 / 55

Testing Plot Function
gapminder_lifeplot(cntry = "Turkey")

42 / 55

Testing Plot Function
gapminder_lifeplot(cntry = "Rwanda")

43 / 55

Making y Value Flexible
Now let's allow the user to say which variable they want on the y-axis. How
we can get the right labels for the axis and title? We can use a named
character vector to serve as a "lookup table" inside the function:

y_axis_label <- c("lifeExp" = "Life expectancy",
 "pop" = "Population (millions)",
 "gdpPercap" = "GDP per capita, USD")
title_text <- c("lifeExp" = "Life expectancy in ",
 "pop" = "Population of ",
 "gdpPercap" = "GDP per capita in ")
example use:
y_axis_label["pop"]

pop
"Population (millions)"

title_text["pop"]

pop
"Population of "

44 / 55

aes_string()
ggplot() is usually looking for "naked" variables, but we can tell it to take
them as quoted strings (standard evaluation) using aes_string() instead of
aes() , which is handy when making functions:

gapminder_plot <- function(cntry, yvar) {
 y_axis_label <- c("lifeExp" = "Life expectancy",
 "pop" = "Population (millions)",
 "gdpPercap" = "GDP per capita, USD")[yvar]
 title_text <- c("lifeExp" = "Life expectancy in ",
 "pop" = "Population of ",
 "gdpPercap" = "GDP per capita in ")[yvar]
 ggplot(gapminder %>% filter(country == cntry) %>%
 mutate(pop = pop / 1000000),
 aes_string(x = "year", y = yvar)) +
 geom_line(color = "firebrick") +
 ggtitle(paste0(title_text, cntry, " since 1952")) +
 xlab(NULL) + ylab(y_axis_label) + theme_minimal() +
 theme(plot.title = element_text(hjust = 0, size = 20))
}

45 / 55

Testing gapminder_plot()
gapminder_plot(cntry = "Turkey", yvar = "pop")

46 / 55

Testing gapminder_plot()
gapminder_plot(cntry = "Rwanda", yvar = "gdpPercap")

47 / 55

Making an Operator

48 / 55

Opposite of %in%
%in% returns TRUE where elements on its left equal any element on the right.

us_ca <- c("Canada", "United States")
gapminder %>% filter(country %in% us_ca) %>% distinct(country) %>% head(2)

A tibble: 2 x 1
country
<fct>
1 Canada
2 United States

We can invert this to get the opposite, but it looks a bit awkward:

gapminder %>% filter(!country %in% us_ca) %>% distinct(country) %>% head(2)

A tibble: 2 x 1
country
<fct>
1 Afghanistan
2 Albania

49 / 55

%!in%
We can invert or negate1 %in% to get a "not in" operator:

`%!in%` <- Negate(`%in%`)

To make a new operator, you need to put it in backticks.

gapminder %>%
 filter(country %!in% us_ca) %>% # Our new operator!
 distinct(country) %>%
 head(2)

A tibble: 2 x 1
country
<fct>
1 Afghanistan
2 Albania

[1] Negate() produces logical negations of functions, inverting their output.
e.g.: isnt.numeric <- Negate(is.numeric)

50 / 55

Wrapping Up

51 / 55

Debugging
Something not working as hoped? Try using debug() on a function, which
will show you the world as perceived from inside the function:

debug(gapminder_plot)

Then when you've fixed your problem, use undebug() so that you won't go
into debug mode every time you run it:

undebug(gapminder_plot)

52 / 55

Overview: The Process
Data processing can be very complicated, with many valid ways of
accomplishing it.

I believe the best general approach is the following:

1. Look carefully at the starting data to figure out what you can get from
them.

2. Determine precisely what you want the end product to look like.
3. Identify individual steps needed to go from Step 1 to Step 2.
4. Make each discrete step its own set of functions or function calls.

If any step is confusing or complicated, break it into more steps.
5. Complete each step separately and in order.

Do not continue until a step is producing what you need for the next
step.
Do not worry about combining steps for efficiency until
everything works.

Once finished, if you need to do this again, convert the prior steps into
functions!

53 / 55

Bonus Function
My lectures are rendered with a function!

render_and_print_slides <- function(week){
 week_dir <- paste0(getwd(), "/Lectures/", "Week", week, "/")
 current_rmd <- paste0(week_dir, stringr::str_subset(list.files(week_dir),
 "^CSSS508_Week.*\\.Rmd$"))
 rmarkdown::render(current_rmd, encoding = "UTF-8")
 current_html <- stringr::str_replace(current_rmd, "\\.Rmd", "\\.html")
 new_pdf_file <- stringr::str_replace(current_html, "\\.html", "\\.pdf")
 new_r_script <- stringr::str_replace(current_html, "\\.html", "\\.R")
 message("Slides rendered, waiting 5 seconds.")
 Sys.sleep(5)
 message("Purling slides.")
 knitr::purl(input = current_rmd, output = new_r_script, documentation = 0)
 message("Printing from Chrome.")
 pagedown::chrome_print(current_html, format="pdf")
 message(paste0("Printing complete at ", week_dir))
}

I give it a numeric week and it (1) finds the lecture .Rmd , (2) knits the slides,
(3) creates a .R file, (4) then opens the slides in Chrome and prints a PDF.

54 / 55

Homework
Download and analyze data from the first year of Seattle's Pronto! bike
sharing program.

Using the provided template, you will write:

1. A loop (or lapply()) to read in the data from multiple files.
Don't just use vroom() !

2. Functions to clean up the data
3. A function to visualize ridership over the first year.

There is some string processing needed—much of which you have already
seen or can probably Google—but some will come in the next lecture. I give
suggestions in the template, but I can cover string processing in detail in lab if
needed before the homework is due.

PART 1 DUE: Next week

PART 2 DUE: In two weeks

55 / 55

https://s3.amazonaws.com/pronto-data/open_data_year_one.zip

