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Today's Theme:
"Data Custodian Work"

Issues around getting data in and out of R and making it analytically ready:

Working directories and projects

Importing and exporting data: readr  and haven

Cleaning and reshaping data: tidyr

Dates and times: lubridate

Controlling factor variables: forcats
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Directories
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Working Directory
You may recall that the working directory is where R will look for and save
things by default.

You can find out what it is using the function getwd() .

On my computer when I knitted these slides, it happened to be:

getwd()

## [1] "C:/Users/cclan/OneDrive/GitHub/CSSS508/Lectures/Week5"
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Changing Your Working

Directory
You can use setwd(dir = "C:/path/to/new/working/directory")  to
change the working directory.

Working Directory Suggestions:

.Rmd  files use their current directory as a working directory: Just put
everything you need in there!

For larger projects, instead of setting a working directory, it is usually
better to use RStudio projects to manage working directories.

Windows users: If you copy a path from Explorer, make sure to change
back slashes (\) to forward slashes (/) for the filepaths

If you need to set a working, put setwd()  at the start of your file so that
someone using another computer knows they need to modify it
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https://support.rstudio.com/hc/en-us/articles/200526207-Using-Projects


Projects in RStudio
A better way to deal with working directories: RStudio's project feature in the
top-right dropdown. This has lots of advantages:

Sets your working directory to be the project directory.

Remembers objects in your workspace, command history, etc. next time
you re-open that project.

Reduces risk of intermingling different work using the same variable
names (e.g. n) by using separate RStudio instances for each project.

Easy to integrate with version control systems (e.g. git)

I usually make each RStudio project its own GitHub repository.

If you're interested in advanced project management, ask me after class or check out
my presentation on reproducible research with rrtools.
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https://clanfear.github.io/birthtiming/inst/presentation/presentation.html#/


Relative Paths
Once you've set the working directory—or you're in an RStudio project—you
can refer to folders and files within the working directory using relative
paths.

library(ggplot2)
a_plot <- ggplot(data = cars, aes(x = speed, y = dist)) +
    geom_point()
ggsave("graphics/cars_plot.png", plot = a_plot)

The above would save an image called "cars_plot.png" inside an existing
folder called "graphics" within my working directory.

Relative paths are nice, because all locations of loaded and saved files can be
changed just by altering the working directory.

Relative paths also allow others to download your files or entire project and
use them on their computer without modifying all the paths!
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Importing and Exporting Data
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Special Data Access Packages
If you are working with a popular data source, try Googling to see if it has a
devoted R package on CRAN or Github (use
remotes::install_github("user/repository")  for these). Examples:

WDI : World Development Indicators (World Bank)
WHO : World Health Organization API
tidycensus : Census and American Community Survey 1

quantmod : financial data from Yahoo, FRED, Google

[1] We'll use this in our lecture on geographical data!
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Delimited Text Files
Besides a package, the easiest way to work with external data is for it to be
stored in a delimited text file, e.g. comma-separated values (.csv) or tab-
separated values (.tsv). Here is .csv data:

"Subject","Depression","Sex","Week","HamD","Imipramine"
101,"Non-endogenous","Male",0,26,NA
101,"Non-endogenous","Male",1,22,NA
101,"Non-endogenous","Male",2,18,4.04305
101,"Non-endogenous","Male",3,7,3.93183
101,"Non-endogenous","Male",4,4,4.33073
101,"Non-endogenous","Male",5,3,4.36945
103,"Non-endogenous","Female",0,33,NA
103,"Non-endogenous","Female",1,24,NA
103,"Non-endogenous","Female",2,15,2.77259
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readr
R has a variety of built-in functions for importing data stored in text files, like
read.table()  and read.csv() . I recommend using the versions in the
readr  package instead: read_csv() , read_tsv() , and read_delim() :

readr  function features:

Faster!1

Better defaults (e.g. doesn't automatically convert character data to
factors)
A little smarter about dates and times
Handy function problems()  you can run if there are errors
Loading bars for large files

library(readr)

[1] vroom  is even faster!
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readr Importing Example
Let's import some data about song ranks on the Billboard Hot 100 in 2000:

## 
## -- Column specification ----------------------------------------------
## cols(
##   .default = col_double(),
##   artist = col_character(),
##   track = col_character(),
##   time = col_time(format = ""),
##   date.entered = col_date(format = ""),
##   wk66 = col_logical(),
##   wk67 = col_logical(),
##   wk68 = col_logical(),
##   wk69 = col_logical(),
##   wk70 = col_logical(),
##   wk71 = col_logical(),
##   wk72 = col_logical(),
##   wk73 = col_logical(),
##   wk74 = col_logical(),
##   wk75 = col_logical(),
##   wk76 = col_logical()
## )
## i Use `spec()` for the full column specifications.

billboard_2000_raw <- read_csv(file = "https://clanfear.github.io/CSSS508/Lectures/Week5/dat
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Did It Load?
Look at the data types for the last few columns:

str(billboard_2000_raw[, 65:ncol(billboard_2000_raw)])

## tibble[,17] [317 x 17] (S3: tbl_df/tbl/data.frame)
##  $ wk60: num [1:317] NA NA NA NA NA NA NA NA NA NA ...
##  $ wk61: num [1:317] NA NA NA NA NA NA NA NA NA NA ...
##  $ wk62: num [1:317] NA NA NA NA NA NA NA NA NA NA ...
##  $ wk63: num [1:317] NA NA NA NA NA NA NA NA NA NA ...
##  $ wk64: num [1:317] NA NA NA NA NA NA NA NA NA NA ...
##  $ wk65: num [1:317] NA NA NA NA NA NA NA NA NA NA ...
##  $ wk66: logi [1:317] NA NA NA NA NA NA ...
##  $ wk67: logi [1:317] NA NA NA NA NA NA ...
##  $ wk68: logi [1:317] NA NA NA NA NA NA ...
##  $ wk69: logi [1:317] NA NA NA NA NA NA ...
##  $ wk70: logi [1:317] NA NA NA NA NA NA ...
##  $ wk71: logi [1:317] NA NA NA NA NA NA ...
##  $ wk72: logi [1:317] NA NA NA NA NA NA ...
##  $ wk73: logi [1:317] NA NA NA NA NA NA ...
##  $ wk74: logi [1:317] NA NA NA NA NA NA ...
##  $ wk75: logi [1:317] NA NA NA NA NA NA ...
##  $ wk76: logi [1:317] NA NA NA NA NA NA ...
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What Went Wrong?
readr  uses the values in the first 1000 rows to guess the type of the column
(integer, logical, numeric, character). There are not many songs in the data
that charted for 60+ weeks—and none in the first 1000 that charted for 66+
weeks!

Since it encountered no values, readr  assumed the wk66 -wk76  columns were
character to be sure nothing would be lost. Use the col_types  argument to
fix this:

# paste is a string concatenation function
# i = integer, c = character, D = date
# rep("i", 76) does the 76 weeks of integer ranks
bb_types <- paste(c("icccD", rep("i", 76)), collapse="")

billboard_2000_raw <- 
  read_csv(file = "https://clanfear.github.io/CSSS508/Lectures/Week5/
           col_types = bb_types)
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Alternate Solutions
You could also deal with this by adjusting the maximum rows used by readr
to guess column types:

read_csv(file, guess_max=5000) # Default is 1000

Or you could use read.csv()  in the foreign  package. This is a base R
alternative that is slower and a bit dumber.

Another alternative would be using vroom , a package for high-speed reading
of text data like .csv  files.

vroom::vroom(file)

One advantage of vroom : You can give it a vector of filenames and it will read
every file and combine them into one dataframe.

vroom  has less error checking than readr , though, so best to use on files you
have examined first.
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Spreadsheet Files
For Excel files (.xls  or .xlsx), I recommend using readxl  and writexl .

For Google Docs Spreadsheets, there's the googlesheets4  package.

You won't keep text formatting, color, comments, or merged cells so if these
mean something in your data (bad!), you'll need to get creative.

If an Excel sheet gives you grief (say, due to merged cells), the simplest thing is
open them up, export to CSV, then import in R—and compare carefully to
make sure everything worked!

If you need to programmatically work with non-tabular Excel sheets--
particularly if you need to retain meaningful formatting--look to the powerful
but complex unpivotr  and tidyxl  packages.

16 / 66



Writing Delimited Files
Getting data out of R into a delimited file is very similar to getting it into R:

write_csv(billboard_2000_raw, path = "billboard_data.csv")

This saved the data we pulled off the web in a file called
billboard_data.csv  in my working directory.
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Saving in R Formats
Exporting to a .csv  drops R metadata, such as whether a variable is a
character or factor. You can save objects (data frames, lists, etc.) in R formats
to preserve this.

.Rds  format:

Used for single objects, doesn't save original the object name
Save: write_rds(old_object_name, "path.Rds")
Load: new_object_name <- read_rds("path.Rds")

.Rdata  or .Rda  format:

Used for saving multiple files where the original object names are
preserved
Save: save(object1, object2, ... , file = "path.Rdata")
Load: load("path.Rdata")  without assignment operator

I pretty much always just save as .Rdata --but that is personal preference.
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dput()
For asking for help, it is useful to prepare a snippet of your data with
dput() :1

dput(head(cars, 8))

## structure(list(speed = c(4, 4, 7, 7, 8, 9, 10, 10), dist = c(2, 
## 10, 4, 22, 16, 10, 18, 26)), row.names = c(NA, 8L), class = "data.frame")

The output of dput()  can be copied and assigned to an object in R:

temp <- structure(list(speed = c(4, 4, 7, 7, 8, 9, 10, 10), 
                       dist = c(2, 10, 4, 22, 16, 10, 18, 26)),
                       .Names = c("speed", "dist"),
                       row.names = c(NA, 8L), class = "data.frame")

[1] A reprex is even better!
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Reading in Data from Other

Software
Working with Stata or SPSS users? You can use a package to bring in their
saved data files:

haven  for Stata, SPSS, and SAS.
Part of the tidyverse  family

foreign  for Stata, SPSS, Minitab
Part of base R

For less common formats, Google it. I've yet to encounter a data format
without an R package to handle it (or at least a clever hack).

If you encounter a mysterious file extension (e.g. .dat), try opening it with a
good text editor first (e.g. Atom or Sublime); there's a good chance it is actually
raw text with a delimiter or fixed format that R can handle!
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Tidying Data
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Initial Spot Checks
First things to check after loading new data:

Did the last rows/columns from the original file make it in?

May need to use different package or manually specify range

Are the column names in good shape?

Modify a col_names=  argument or fix with rename()

Are there "decorative" blank rows or columns to remove?

filter()  or select()  out those rows/columns

How are missing values represented: NA , " "  (blank), .  (period), 999?

Use mutate()  with ifelse()  to fix these (perhaps en masse with looping)

Are there character data (e.g. ZIP codes with leading zeroes) being incorrectly
represented as numeric or vice versa?

Modify col_types=  argument, or use mutate()  and as.numeric()
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Slightly Messy Data
Program Woman Man

Evans School 10 6

Arts & Sciences 5 6

Public Health 2 3

Other 5 1

What is an observation?
A group of students from a program of a given gender

What are the variables?
Program, gender

What are the values?
Program: Evans School, Arts & Sciences, Public Health, Other
Gender: Woman, Man -- in the column headings, not its own
column!
Count: spread over two columns!
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Tidy Version
Program Gender Count

Evans School Woman 10

Evans School Man 6

Arts & Sciences Woman 5

Arts & Sciences Man 6

Public Health Woman 2

Public Health Man 3

Other Woman 5

Other Man 1

Each variable is a column.

Each observation is a row.

Ready to throw into ggplot() !
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Billboard is Just Ugly-Messy
year artist track time date.entered wk1 wk2 wk3 wk4 wk5

2000 2 Pac Baby Don't Cry (Keep... 4:22 2000-02-26 87 82 72 77 87

2000 2Ge+her The Hardest Part Of ... 3:15 2000-09-02 91 87 92 NA NA

2000 3 Doors Down Kryptonite 3:53 2000-04-08 81 70 68 67 66

2000 3 Doors Down Loser 4:24 2000-10-21 76 76 72 69 67

2000 504 Boyz Wobble Wobble 3:35 2000-04-15 57 34 25 17 17

2000 98^0 Give Me Just One Nig... 3:24 2000-08-19 51 39 34 26 26

2000 A*Teens Dancing Queen 3:44 2000-07-08 97 97 96 95 100

2000 Aaliyah I Don't Wanna 4:15 2000-01-29 84 62 51 41 38

2000 Aaliyah Try Again 4:03 2000-03-18 59 53 38 28 21

2000 Adams, Yolanda Open My Heart 5:30 2000-08-26 76 76 74 69 68

2000 Adkins, Trace More 3:05 2000-04-29 84 84 75 73 73

2000
Aguilera,
Christina

Come On Over Baby
(A...

3:38 2000-08-05 57 47 45 29 23

Week columns continue up to wk76 !
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Billboard
What are the observations in the data?

Week since entering the Billboard Hot 100 per song

What are the variables in the data?

Year, artist, track, song length, date entered Hot 100, week since first
entered Hot 100 (spread over many columns), rank during week
(spread over many columns)

What are the values in the data?

e.g. 2000; 3 Doors Down; Kryptonite; 3 minutes 53 seconds; April 8,
2000; Week 3 (stuck in column headings); rank 68 (spread over
many columns)
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Tidy Data
Tidy data (aka "long data") are such that:

1. The values for a single observation are in their own row.
2. The values for a single variable are in their own column.
3. There is only one value per cell.1

Why do we want tidy data?

Easier to understand many rows than many columns
Required for plotting in ggplot2
Required for many types of statistical procedures (e.g. hierarchical or
mixed effects models)
Fewer confusing variable names
Fewer issues with missing values and "imbalanced" repeated measures
data

[1] What one value means is subjective--it could be an entire dataset.
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tidyr
The tidyr  package provides functions to tidy up data, similar to reshape  in
Stata or varstocases  in SPSS. Key functions:

pivot_longer() : takes a set of columns and pivots them down to make
two new columns (which you can name yourself):

A name  column that stores the original column names
A value  with the values in those original columns

pivot_wider() : inverts pivot_longer()  by taking two columns and
pivoting them up into multiple columns

separate() : pulls apart one column into multiple columns (common
after pivot_longer()  where values are embedded in column names)

extract_numeric()  does a simple version of this for the common
case when you just want grab the number part

extract()  for pivoting a column into multiple sets of columns.
See Hadley's response to this question for an example.
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https://stackoverflow.com/questions/25925556/gather-multiple-sets-of-columns


pivot_longer()
Let's use pivot_longer()  to get the week and rank variables out of their
current layout into two columns (big increase in rows, big drop in columns):

library(tidyr); library(dplyr)
billboard_2000 <- billboard_2000_raw %>%
  pivot_longer(starts_with("wk"), 
               names_to  = "week", 
               values_to = "rank")
dim(billboard_2000)

## [1] 24092     7

starts_with()  and other syntax and helper functions from
dplyr::select()  work here too.

We could instead use: pivot_longer(wk1:wk76, names_to = "week",
values_to = "rank")  to pull out these contiguous columns.
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pivoted Weeks
head(billboard_2000)

## # A tibble: 6 x 7
##    year artist track                   time  date.entered week   rank
##   <int> <chr>  <chr>                   <chr> <date>       <chr> <int>
## 1  2000 2 Pac  Baby Don't Cry (Keep... 4:22  2000-02-26   wk1      87
## 2  2000 2 Pac  Baby Don't Cry (Keep... 4:22  2000-02-26   wk2      82
## 3  2000 2 Pac  Baby Don't Cry (Keep... 4:22  2000-02-26   wk3      72
## 4  2000 2 Pac  Baby Don't Cry (Keep... 4:22  2000-02-26   wk4      77
## 5  2000 2 Pac  Baby Don't Cry (Keep... 4:22  2000-02-26   wk5      87
## 6  2000 2 Pac  Baby Don't Cry (Keep... 4:22  2000-02-26   wk6      94

Now we have a single week column!
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Pivoting Better?
summary(billboard_2000$rank)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max.    NA's 
##    1.00   26.00   51.00   51.05   76.00  100.00   18785

This is an improvement, but we don't want to keep the 18785 rows with
missing ranks (i.e. observations for weeks since entering the Hot 100 that the
song was no longer on the Hot 100).

31 / 66



Pivoting Better: values_drop_na
The argument values_drop_na = TRUE  to pivot_longer()  will remove
rows with missing ranks.

billboard_2000 <- billboard_2000_raw %>%
  pivot_longer(starts_with("wk"), 
               names_to       = "week", 
               values_to      = "rank", 
               values_drop_na = TRUE)
summary(billboard_2000$rank)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00   26.00   51.00   51.05   76.00  100.00

No more NA  values!

dim(billboard_2000)

## [1] 5307    7

And way fewer rows!
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parse_number()
The week column is character, but should be numeric.

summary(billboard_2000$week)

##    Length     Class      Mode 
##      5307 character character

tidyr  provides a convenience function to grab just the numeric information
from a column that mixes text and numbers:

billboard_2000 <- billboard_2000 %>%
    mutate(week = parse_number(week))
summary(billboard_2000$week)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##    1.00    5.00   10.00   11.47   16.00   65.00

For more sophisticated conversion or pattern checking, you'll need to use
string parsing (to be covered in week 8).
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Or use names_prefix
billboard_2000 <- billboard_2000_raw %>%
  pivot_longer(starts_with("wk"), 
               names_to        = "week", 
               values_to       = "rank",
               values_drop_na  = TRUE,
               names_prefix    = "wk",
               names_transform = list(week = as.integer))
head(billboard_2000, 3)

## # A tibble: 3 x 7
##    year artist track                   time  date.entered  week  rank
##   <int> <chr>  <chr>                   <chr> <date>       <int> <int>
## 1  2000 2 Pac  Baby Don't Cry (Keep... 4:22  2000-02-26       1    87
## 2  2000 2 Pac  Baby Don't Cry (Keep... 4:22  2000-02-26       2    82
## 3  2000 2 Pac  Baby Don't Cry (Keep... 4:22  2000-02-26       3    72

We use names_prefix  to remove "wk"  from the values, and
names_transform  to convert into an integer number.
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separate()
The track length column isn't analytically friendly. Let's convert it to a number
rather than the character (minutes:seconds) format:

billboard_2000 <- billboard_2000 %>%
    separate(time, into = c("minutes", "seconds"),
             sep = ":", convert = TRUE) %>%
    mutate(length = minutes + seconds / 60) %>%
    select(-minutes, -seconds)
summary(billboard_2000$length)

##    Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
##   2.600   3.667   3.933   4.031   4.283   7.833

sep = ":"  tells separate()  to split the column into two where it finds a
colon (:).

Then we add seconds / 60  to minutes  to produce a numeric length  in
minutes.
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pivot_wider() Motivation
pivot_wider()  is the opposite of pivot_longer() , which you use if you
have data for the same observation taking up multiple rows.

Example of data that we probably want to pivot wider (unless we want to plot
each statistic in its own facet):

Group Statistic Value

A Mean 1.28

A Median 1.0

A SD 0.72

B Mean 2.81

B Median 2

B SD 1.33

A common cue to use pivot_wider()  is having measurements of different
quantities in the same column.

36 / 66



Before pivot_wider()
(too_long_data <- 
   data.frame(Group     = c(rep("A", 3), rep("B", 3)),
              Statistic = rep(c("Mean", "Median", "SD"), 2),
              Value     = c(1.28, 1.0, 0.72, 2.81, 2, 1.33)))

##   Group Statistic Value
## 1     A      Mean  1.28
## 2     A    Median  1.00
## 3     A        SD  0.72
## 4     B      Mean  2.81
## 5     B    Median  2.00
## 6     B        SD  1.33
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After pivot_wider()
(just_right_data <- too_long_data %>%
    pivot_wider(names_from = Statistic, values_from = Value))

## # A tibble: 2 x 4
##   Group  Mean Median    SD
##   <chr> <dbl>  <dbl> <dbl>
## 1 A      1.28      1  0.72
## 2 B      2.81      2  1.33
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Charts of 2000: Data Prep
Let's look at songs that hit #1 at some point and look how they got there versus
songs that did not:

billboard_2000 <- billboard_2000 %>%
    group_by(artist, track) %>%
    mutate(`Weeks at #1` = sum(rank == 1),
           `Peak Rank`   = ifelse(any(rank == 1),
                                  "Hit #1",
                                  "Didn't #1")) %>%
    ungroup()

Things to note:

any(min_rank==1)  checks to see if any value of rank  is equal to one for
the given artist  and track

ungroup()  here removes the grouping made by group_by() .
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Charts of 2000: ggplot2
library(ggplot2)
billboard_trajectories <- 
  ggplot(data = billboard_2000,
         aes(x = week, y = rank, group = track,
             color = `Peak Rank`)
         ) +
  geom_line(aes(size = `Peak Rank`), alpha = 0.4) +
    # rescale time: early weeks more important
  scale_x_log10(breaks = seq(0, 70, 10)) + 
  scale_y_reverse() + # want rank 1 on top, not bottom
  theme_classic() +
  xlab("Week") + ylab("Rank") +
  scale_color_manual(values = c("black", "red")) +
  scale_size_manual(values = c(0.25, 1)) +
  theme(legend.position = c(0.90, 0.25),
        legend.background = element_rect(fill="transparent"))
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Charts of 2000: Beauty!

Observation: There appears to be censoring around week 20 for songs falling
out of the top 50 that I'd want to follow up on.
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Which Were #1 the Most Weeks?

billboard_2000 %>%
    distinct(artist, track, `Weeks at #1`) %>%
    arrange(desc(`Weeks at #1`)) %>%
    head(7)

## # A tibble: 7 x 3
##   artist              track                   `Weeks at #1`
##   <chr>               <chr>                           <int>
## 1 Destiny's Child     Independent Women Pa...            11
## 2 Santana             Maria, Maria                       10
## 3 Aguilera, Christina Come On Over Baby (A...             4
## 4 Madonna             Music                               4
## 5 Savage Garden       I Knew I Loved You                  4
## 6 Destiny's Child     Say My Name                         3
## 7 Iglesias, Enrique   Be With You                         3
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Dates and Times
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Getting Usable Dates
We have the date the songs first charted, but not the dates for later weeks. We
can calculate these now that the data are tidy:

billboard_2000 <- billboard_2000 %>%
    mutate(date = date.entered + (week - 1) * 7)
billboard_2000 %>% arrange(artist, track, week) %>%
    select(artist, date.entered, week, date, rank) %>% head(4)

## # A tibble: 4 x 5
##   artist date.entered  week date        rank
##   <chr>  <date>       <int> <date>     <int>
## 1 2 Pac  2000-02-26       1 2000-02-26    87
## 2 2 Pac  2000-02-26       2 2000-03-04    82
## 3 2 Pac  2000-02-26       3 2000-03-11    72
## 4 2 Pac  2000-02-26       4 2000-03-18    77

This works because date  objects are in units of days—we just add 7 days per
week to the start date.
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Preparing to Plot Over

Calendar Time
plot_by_day <- 
  ggplot(billboard_2000, aes(x = date, y = rank, group = track)) +
  geom_line(size = 0.25, alpha = 0.4) +
  # just show the month abbreviation label (%b)
  scale_x_date(date_breaks = "1 month", date_labels = "%b") +
  scale_y_reverse() + theme_bw() +
  # add lines for start and end of year:
  # input as dates, then make numeric for plotting
  geom_vline(xintercept = as.numeric(as.Date("2000-01-01", "%Y-%m-%d")),
             col = "red") +
  geom_vline(xintercept = as.numeric(as.Date("2000-12-31", "%Y-%m-%d")),
             col = "red") +
  xlab("Week") + ylab("Rank")
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Calendar Time Plot!

We see some of the entry dates are before 2000---presumably songs still
charting during 2000 that came out earlier.

46 / 66



Dates and Times
To practice working with finer-grained temporal information, let's look at one
day of Seattle Police response data obtained from data.seattle.gov:

spd_raw <- read_csv("https://clanfear.github.io/CSSS508/Seattle_Police_Department_911_Incident_Response.csv")

## 
## -- Column specification ----------------------------------------------
## cols(
##   `CAD CDW ID` = col_double(),
##   `CAD Event Number` = col_double(),
##   `General Offense Number` = col_double(),
##   `Event Clearance Code` = col_character(),
##   `Event Clearance Description` = col_character(),
##   `Event Clearance SubGroup` = col_character(),
##   `Event Clearance Group` = col_character(),
##   `Event Clearance Date` = col_character(),
##   `Hundred Block Location` = col_character(),
##   `District/Sector` = col_character(),
##   `Zone/Beat` = col_character(),
##   `Census Tract` = col_double(),
##   Longitude = col_double(),
##   Latitude = col_double(),
##   `Incident Location` = col_character(),
##   `Initial Type Description` = col_character(),
##   `Initial Type Subgroup` = col_character(),
##   `Initial Type Group` = col_character(),
##   `At Scene Time` = col_character()
## )
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SPD Data
glimpse(spd_raw)

## Rows: 706
## Columns: 19
## $ `CAD CDW ID`                  <dbl> 1701856, 1701857, 1701853, 170~
## $ `CAD Event Number`            <dbl> 16000104006, 16000103970, 1600~
## $ `General Offense Number`      <dbl> 2016104006, 2016103970, 201610~
## $ `Event Clearance Code`        <chr> "063", "064", "161", "245", "2~
## $ `Event Clearance Description` <chr> "THEFT - CAR PROWL", "SHOPLIFT~
## $ `Event Clearance SubGroup`    <chr> "CAR PROWL", "THEFT", "TRESPAS~
## $ `Event Clearance Group`       <chr> "CAR PROWL", "SHOPLIFTING", "T~
## $ `Event Clearance Date`        <chr> "03/25/2016 11:58:30 PM", "03/~
## $ `Hundred Block Location`      <chr> "S KING ST / 8 AV S", "92XX BL~
## $ `District/Sector`             <chr> "K", "S", "D", "M", "M", "B", ~
## $ `Zone/Beat`                   <chr> "K3", "S3", "D2", "M1", "M3", ~
## $ `Census Tract`                <dbl> 9100.102, 11800.602, 7200.106,~
## $ Longitude                     <dbl> -122.3225, -122.2680, -122.342~
## $ Latitude                      <dbl> 47.59835, 47.51985, 47.61422, ~
## $ `Incident Location`           <chr> "(47.598347, -122.32245)", "(4~
## $ `Initial Type Description`    <chr> "THEFT (DOES NOT INCLUDE SHOPL~
## $ `Initial Type Subgroup`       <chr> "OTHER PROPERTY", "SHOPLIFTING~
## $ `Initial Type Group`          <chr> "THEFT", "THEFT", "TRESPASS", ~
## $ `At Scene Time`               <chr> "03/25/2016 10:25:51 PM", "03/~
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lubridate
str(spd_raw$`Event Clearance Date`)

##  chr [1:706] "03/25/2016 11:58:30 PM" "03/25/2016 11:57:22 PM" ...

We want this to be in a date/time format ("POSIXct"), not character. We will
work with dates using the lubridate  package.

# install.packages("lubridate")
library(lubridate)
spd <- spd_raw %>% 
  mutate(`Event Clearance Date` = 
           mdy_hms(`Event Clearance Date`,
                   tz = "America/Los_Angeles"))
str(spd$`Event Clearance Date`)

##  POSIXct[1:706], format: "2016-03-25 23:58:30" "2016-03-25 23:57:22" ...

mdy_hms()  processes datetimes in month-day-year, hour-minute-second format. It
figures out separators for you!
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An Aside on Time
Time data are a bit weird.

R uses two primary formats for storing data on times and dates:

POSIXct : Numeric vector of seconds since the beginning of 1970.
POSIXlt : Named list of vectors containing lots of date/time information.

We usually work with POSIXct .

lubridate  gives us many convenience functions for dealing with date/time
data.

It is often easiest to just convert time to standard numeric values and work
with it that way, however, particularly if it will be used as a variable in a
statistical model.
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Useful Date/Time Functions
demo_dts <- spd$`Event Clearance Date`[1:2]
(date_only <- as.Date(demo_dts, tz = "America/Los_Angeles"))

## [1] "2016-03-25" "2016-03-25"

(day_of_week_only <- weekdays(demo_dts))

## [1] "Friday" "Friday"

(one_hour_later <- demo_dts + dhours(1))

## [1] "2016-03-26 00:58:30 PDT" "2016-03-26 00:57:22 PDT"
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What Time of Day were

Incidents Cleared?
spd_times <- spd %>%
    select(`Initial Type Group`, `Event Clearance Date`) %>%
    mutate(hour = hour(`Event Clearance Date`))

time_spd_plot <- ggplot(spd_times, aes(x = hour)) +
    geom_histogram(binwidth = 2) +
    facet_wrap( ~ `Initial Type Group`) +
    theme_minimal() +
    theme(strip.text.x = element_text(size = rel(0.6))) +
    ylab("Count of Incidents") + xlab("Hour of Day")
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SPD Event Clearances, March 25
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Managing Factor Variables

54 / 66



Factor Variables
Factors are such a common (and fussy) vector type in R that we need to get to
know them a little better when preparing data:

The order of factor levels controls the order of categories in tables, on
axes, in legends, and in facets in ggplot2 .

Often we want to plot in interpretable/aesthetically pleasing order,
e.g. from highest to lowest values—not "Alabama first".

The lowest level of a factor is treated as a reference for regression, and
the other levels get their own coefficients.

Reference levels are by default alphabetical, which doesn't
necessarily coincide with the easiest to understand baseline category.
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forcats
The tidyverse  family of packages includes the package forcats  (an
anagram of "factors") that is "for cat(egorical)s".

This package supersedes the functionality of the base factor functions with
somewhat more logical and uniform syntax.

To find more, look at the forcats  manual.
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Character to Factor
# install.packages("forcats")
library(forcats)
str(spd_times$`Initial Type Group`)

##  chr [1:706] "THEFT" "THEFT" "TRESPASS" "CRISIS CALL" ...

spd_times <- spd_times %>% 
  mutate(`Initial Type Group` = factor(`Initial Type Group`))
head(spd_times$`Initial Type Group`)

## [1] THEFT                    THEFT                   
## [3] TRESPASS                 CRISIS CALL             
## [5] SUSPICIOUS CIRCUMSTANCES TRAFFIC RELATED CALLS   
## 30 Levels: ANIMAL COMPLAINTS ASSAULTS AUTO RECOVERIES ... WEAPONS CALLS

head(as.numeric(spd_times$`Initial Type Group`))

## [1] 25 25 28  6 24 27
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Releveling by Frequency
fct_infreq()  reorders the factor levels by the frequency they appear in the
data.

spd_times <- spd_times %>% 
  mutate(`Initial Type Group` = 
         fct_infreq(`Initial Type Group`))
head(levels(spd_times$`Initial Type Group`),4)

## [1] "SUSPICIOUS CIRCUMSTANCES" "TRAFFIC RELATED CALLS"   
## [3] "THEFT"                    "DISTURBANCES"

Now the most common levels are first! Time to replot.

time_spd_plot_2 <- ggplot(spd_times, aes(x = hour)) +
  geom_histogram(binwidth = 2) +
  facet_wrap( ~ `Initial Type Group`) +
  theme_minimal() +
  theme(strip.text.x = element_text(size = rel(0.6))) +
  ylab("Count of Incidents") + xlab("Hour of Day")
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Better Ordered Plot
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Other Ways to Reorder
A general way to reorder a factor is through the fct_reorder()  function:

fct_reorder(factor_vector,
        quantity_to_order_by,
        function_to_apply_to_quantities_by_factor)

This is especially useful for making legends go from highest to lowest value
visually using max()  as your function, or making axis labels go from lowest to
highest value using mean() .

Use fct_relevel()  and use the ref=  argument to change the reference
category

Good when fitting regressions where you don't care about the overall
ordering, just which level is the reference
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Reorder Example: Jay-Z
jayz <- billboard_2000 %>% 
  filter(artist == "Jay-Z") %>%
  mutate(track = factor(track))

jayz_bad_legend <- 
  ggplot(jayz, aes(x = week, y = rank, 
                   group = track, color = track)) +
  geom_line() + 
  theme_bw() +
  scale_y_reverse(limits = c(100, 0)) + 
  theme(legend.position = c(0.80, 0.25),
        legend.background = element_rect(fill="transparent")) +
  xlab("Week") + ylab("Rank")
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Jay-Z with Bad Legend Order
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Better Ordering for Jay-Z

jayz <- jayz %>% mutate(track = fct_reorder(track, rank, min))

jayz_good_legend <-
  ggplot(jayz, aes(x = week, y = rank, 
                   group = track, color = track)) +
  geom_line() + 
  theme_bw() +
  scale_y_reverse(limits = c(100, 0)) + 
  theme(legend.position = c(0.80, 0.25),
        legend.background = element_rect(fill="transparent")) +
  xlab("Week") + ylab("Rank")

This reorders track  based on rank 's min()  value.
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Jay-Z with Good Legend Order
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Dropping Unused Levels
After subsetting you can end up with fewer realized levels than before, but old
levels remain linked and can cause problems for regressions. Drop unused
levels from variables or your entire data frame using droplevels() .

jayz_biggest <- jayz %>% 
  filter(track %in% c("I Just Wanna Love U ...", "Big Pimpin'"))
levels(jayz_biggest$track)

## [1] "I Just Wanna Love U ..." "Big Pimpin'"            
## [3] "Anything"                "Do It Again (Put Ya ..."
## [5] "Hey Papi"

jayz_biggest <- jayz_biggest %>% droplevels(.)
levels(jayz_biggest$track)

## [1] "I Just Wanna Love U ..." "Big Pimpin'"
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Homework
Vote tallies in King County from the 2016 general election are in a 60 MB
comma-delimited text file downloaded from King County. They can be found
on the course website.

The data have no documentation (aside from what I provide), so show your
detective work to answer questions about the data and clean them up in the R
Markdown template on the course website. Use ⌘-Click on Mac or Right-Click
on Windows to download the .Rmd to the folder you plan to work from, then
open it in RStudio.

This homework is two parts to be completed in each of the next two weeks. It
can be daunting, so do not wait until Monday to start. I recommend reading
instructions closely, working with others, and using the mailing list and Slack.

PART 1 DUE: Next Week

PART 2 DUE: In Two Weeks
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