
CSSS508, Week 4

R Data Structures

Chuck Lanfear

Apr 21, 2021

Updated: Apr 21, 2021

R Data Types
So far we've been manipulating data frames, making visuals, and
summarizing. This got you pretty far!

Now we get more in the weeds of programming.

Today is all about types of data in R.

2 / 60

Up Until Now
A data frame is really a list of vectors, where each vector is a column of the
same length (number of rows).

But data frames are not the only object we want to have in R (e.g. linear
regression output).

We need to learn about vectors, matrices, and lists to do additional things we
can't express with dplyr syntax.

3 / 60

Vectors

4 / 60

Making Vectors
In R, we call a set of values of the same type a vector. We can create vectors
using the c() function ("c" for combine or concatenate).

c(1, 3, 7, -0.5)

[1] 1.0 3.0 7.0 -0.5

Vectors have one dimension: length

length(c(1, 3, 7, -0.5))

[1] 4

All elements of a vector are the same type (e.g. numeric or character)!

If you mix character and numeric data, the resulting vector will be character.

5 / 60

Element-wise Vector Math
When doing arithmetic operations on vectors, R handles these element-wise:

c(1, 2, 3) + c(4, 5, 6) # = c(1+4, 2+5, 3+6)

[1] 5 7 9

c(1, 2, 3, 4)^3 # exponentiation with ^

[1] 1 8 27 64

Common operations: * , / , exp() = , log() = e
x log

e
(x)

6 / 60

Vector Recycling
If we work with vectors of different lengths, R will recycle the shorter one by
repeating it to make it match up with the longer one:

c(0.5, 3) * c(1, 2, 3, 4) # = c(0.5*1, 3*2, 0.5*3, 3*4)

[1] 0.5 6.0 1.5 12.0

c(0.5, 3, 0.5, 3) * c(1, 2, 3, 4) # same thing

[1] 0.5 6.0 1.5 12.0

7 / 60

Scalars as Recycling
A special case of recycling involves arithmetic with scalars (a single number).
These are vectors of length 1 that are recycled to make a longer vector:

3 * c(-1, 0, 1, 2) + 1

[1] -2 1 4 7

Note R obeys order of operations: Multiplication/division occurs before
addition.

You can use parentheses to control order manually!

8 / 60

Warning on Recycling
Recycling doesn't work so well with vectors of incommensurate lengths:

c(1, 2, 3, 4) + c(0.5, 1.5, 2.5) # = c(1+0.5, 2+1.5, 3+2.5, 4+0.5)

Warning in c(1, 2, 3, 4) + c(0.5, 1.5, 2.5): longer object length is
not a multiple of shorter object length

[1] 1.5 3.5 5.5 4.5

Try not to let R's recycling behavior catch you by surprise!

9 / 60

Vector-Wise Math
Some functions operate on an entire vector and return one number rather
than working element-wise:

sum(c(1, 2, 3, 4))

[1] 10

max(c(1, 2, 3, 4))

[1] 4

Some others: min() , mean() , median() , sd() , var()

You've seen these used with dplyr::summarize() .

10 / 60

Example: Standardizing Data
Let's say we had some test scores and we wanted to put these on a
standardized scale:

x <- c(97, 68, 75, 77, 69, 81, 80, 92, 50, 34, 66, 83, 62)
z <- (x - mean(x)) / sd(x)
round(z, 2)

[1] 1.49 -0.23 0.19 0.31 -0.17 0.54 0.48 1.19 -1.30 -2.24 -0.35
[12] 0.66 -0.58

The scale() function performs the above operation!

zi =
xi − mean(x)

SD(x)

11 / 60

Types of Vectors
class() , typeof , and str() will tell you what kind of vector you have.
There are a few common types of vectors:

numeric: c(1, 10*3, 4, -3.14) 1

integer: 0:10

character: c("red", "blue", "yellow", "blue")

factor: factor(c("red", "blue", "yellow", "blue"))

logical: c(FALSE, TRUE, TRUE, FALSE)

[1] R is perfectly happy with you
including a calculation--or any other valid
object--as an element!

12 / 60

Generating Numeric Vectors
Numeric vectors contain only numbers, with any number of decimal places.

There are shortcuts for generating common kinds of vectors:

seq(-3, 6, by = 1.75) # Sequence from -3 to 6, increments of 1.75

[1] -3.00 -1.25 0.50 2.25 4.00 5.75

rep(c(-1, 0, 1), times = 3) # Repeat c(-1,0,1) 3 times

[1] -1 0 1 -1 0 1 -1 0 1

rep(c(-1, 0, 1), each = 3) # Repeat each element 3 times

[1] -1 -1 -1 0 0 0 1 1 1

13 / 60

Generating Integer Vectors
Integer vectors are a special case of numeric vectors where all the values are
whole numbers.

We can produce them using the : shortcut:

n <- 12
1:n

[1] 1 2 3 4 5 6 7 8 9 10 11 12

n:4

[1] 12 11 10 9 8 7 6 5 4

You can also specify a single integer using a whole number followed by L :

class(9L)

[1] "integer"

14 / 60

Character Vectors
Character vectors store data as text and typically come up when dealing
names, addresses, and IDs:

first_names <- c("Andre", "Beth", "Carly", "Dan")
class(first_names)

[1] "character"

Note you can store numbers as character data as well, but you cannot perform
math on them unless you convert them to numeric.

15 / 60

Factor Vectors
Factors are categorical data that encode a (modest) number of levels, like for
sex, experimental group, or geographic region:

sex <- factor(c("M", "F", "F", "M"))
sex

[1] M F F M
Levels: F M

Character data usually can't go directly into a statistical model1, but factor
data can. It has an underlying numeric representation:

as.numeric(sex)

[1] 2 1 1 2

[1] Most R models will automatically convert character data to factors. The default
reference is chosen alphabetically.

16 / 60

Logical Vectors
Logical vectors take only TRUE and FALSE values, and are typically the
product of logical tests (e.g. x==5). We can make logical vectors by defining
binary conditions to check for. For example, we can look at which of the first
names has at least 4 letters:

name_lengths <- nchar(first_names) # number of characters
name_lengths

[1] 5 4 5 3

name_lengths >= 4

[1] TRUE TRUE TRUE FALSE

17 / 60

Logical Vectors as Numeric
You can do math with logical vectors, because TRUE=1 and FALSE=0:

name_lengths >= 4

[1] TRUE TRUE TRUE FALSE

mean(name_lengths >= 4)

[1] 0.75

What did this last line do?

It told us the proportion of name lengths greater than or equal to four!

18 / 60

Combining Logical

Conditions
Suppose we are interested in which names have an even number of letters:

even_length <- (name_lengths %% 2 == 0)
%% is the modulo operator: gives remainder when dividing
even_length

[1] FALSE TRUE FALSE FALSE

or whose second letter is "a":

second_letter_a <- (substr(first_names, start=2, stop=2) == "a")
substr: substring (portion) of a char vector
second_letter_a

[1] FALSE FALSE TRUE TRUE

19 / 60

Logical Operators
& is AND (both conditions must be TRUE to be TRUE):

even_length & second_letter_a

[1] FALSE FALSE FALSE FALSE

| is OR (at least one condition must be TRUE to be TRUE):

even_length | second_letter_a

[1] FALSE TRUE TRUE TRUE

! is NOT (switches TRUE and FALSE):

!(even_length | second_letter_a)

[1] TRUE FALSE FALSE FALSE

20 / 60

Subsetting Vectors
We can subset a vector in a number of ways:

Passing a single index or vector of entries to keep:

first_names[c(1, 4)]

[1] "Andre" "Dan"

Passing a single index or vector of entries to drop:

first_names[-c(1, 4)]

[1] "Beth" "Carly"

21 / 60

Subsetting Vectors
Passing a logical vector (TRUE=keep, FALSE=drop):

first_names[even_length | second_letter_a]

[1] "Beth" "Carly" "Dan"

first_names[sex != "F"] # != is "not equal to"

[1] "Andre" "Dan"

22 / 60

Some Logical/Subsetting

Functions
%in% lets you avoid typing a lot of logical ORs (|):

first_names %in% c("Andre", "Carly", "Dan")

[1] TRUE FALSE TRUE TRUE

which() gives the indices of TRUEs in a logical vector:

which(first_names %in% c("Andre", "Carly", "Dan"))

[1] 1 3 4

23 / 60

Missing Values
Missing values are coded as NA entries without quotes:

vector_w_missing <- c(1, 2, NA, 4, 5, 6, NA)

Even one NA "poisons the well": You'll get NA out of your calculations unless
you remove them manually or with the extra argument na.rm = TRUE (in
some functions):

mean(vector_w_missing)

[1] NA

mean(vector_w_missing, na.rm=TRUE)

[1] 3.6

24 / 60

Finding Missing Values
WARNING: You can't test for missing values by seeing if they "equal" (==) NA :

vector_w_missing == NA

[1] NA NA NA NA NA NA NA

Instead, use the is.na() function:

is.na(vector_w_missing)

[1] FALSE FALSE TRUE FALSE FALSE FALSE TRUE

mean(vector_w_missing[!is.na(vector_w_missing)])

[1] 3.6

This is the same as using mean(na.rm=T)

25 / 60

NA and %in%
When testing logical conditions, NA will produce an NA rather than TRUE or
FALSE :

vector_w_missing == 5

[1] FALSE FALSE NA FALSE TRUE FALSE NA

It is noteworthy, however, that %in% will handle NAs:

vector_w_missing %in% 5

[1] FALSE FALSE FALSE FALSE TRUE FALSE FALSE

vector_w_missing %in% NA

[1] FALSE FALSE TRUE FALSE FALSE FALSE TRUE

It is still usually best to handle NAs directly, however!

26 / 60

Inf and NaN
Sometimes we might get positive or negative infinity (Inf , -Inf) or NaN (Not
A Number) from our calculations:

c(-2, -1, 0, 1, 2) / 0

[1] -Inf -Inf NaN Inf Inf

You can check for these using functions like is.finite() or is.nan() .1

is.finite(c(-2, -1, 0, 1, 2) / 0)

[1] FALSE FALSE FALSE FALSE FALSE

is.nan(c(-2, -1, 0, 1, 2) / 0)

[1] FALSE FALSE TRUE FALSE FALSE

[1] Infinity is a number... but isn't finite.

27 / 60

Previewing Vectors
Like with data frames, we can use head() and tail() to preview vectors:

head(letters) # letters is a built-in vector

[1] "a" "b" "c" "d" "e" "f"

head(letters, 10)

[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j"

tail(letters)

[1] "u" "v" "w" "x" "y" "z"

28 / 60

Named Vector Entries
We can also index vectors by assigning names to the entries.

a_vector <- 1:26
names(a_vector) <- LETTERS # capital version of letters
head(a_vector)

A B C D E F
1 2 3 4 5 6

a_vector[c("R", "S", "T", "U", "D", "I", "O")]

R S T U D I O
18 19 20 21 4 9 15

Names are nice for subsetting because they don't depend on your data being
in a certain order.

29 / 60

Matrices

30 / 60

Matrices: Two Dimensions
Matrices extend vectors to two dimensions: rows and columns. We can
construct them directly using matrix .

Note the byrow= argument which determines whether the data fill the matrix
by row or by column.

(a_matrix <- matrix(letters[1:6], nrow=2, ncol=3))

[,1] [,2] [,3]
[1,] "a" "c" "e"
[2,] "b" "d" "f"

(b_matrix <- matrix(letters[1:6], nrow=2, ncol=3, byrow=TRUE))

[,1] [,2] [,3]
[1,] "a" "b" "c"
[2,] "d" "e" "f"

31 / 60

Binding Vectors
We can also make matrices by binding vectors together with rbind() (row
bind) and cbind() (column bind).

(c_matrix <- cbind(c(1, 2), c(3, 4), c(5, 6)))

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6

(d_matrix <- rbind(c(1, 2, 3), c(4, 5, 6)))

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

32 / 60

Subsetting Matrices
We subset matrices using the same methods as with vectors, except we index
them with [rows, columns] :

a_matrix[1, 2] # row 1, column 2

[1] "c"

a_matrix[1, c(2, 3)] # row 1, columns 2 and 3

[1] "c" "e"

We can obtain the dimensions of a matrix using dim() .

dim(a_matrix)

[1] 2 3

Note that using length() on a matrix will not give you the number of rows
or columns but rather the number of elements!

33 / 60

Matrices Becoming Vectors
If a matrix ends up having just one row or column after subsetting, by default
R will make it into a vector. You can prevent this behavior using drop=FALSE .

a_matrix[, 1] # all rows, column 1, becomes a vector

[1] "a" "b"

a_matrix[, 1, drop=FALSE] # all rows, column 1, stays a matrix

[,1]
[1,] "a"
[2,] "b"

34 / 60

Matrix Data Type Warning
Matrices can be numeric, integer, factor, character, or logical, just like vectors.
Also like vectors, all elements must be the same data type.

(bad_matrix <- cbind(1:2, LETTERS[c(6,1)]))

[,1] [,2]
[1,] "1" "F"
[2,] "2" "A"

typeof(bad_matrix)

[1] "character"

In this case, everything was converted to character so as not to lose
information.

35 / 60

Matrix Dimension Names
We can access dimension names or name them ourselves:

rownames(bad_matrix) <- c("Wedge", "Biggs")
colnames(bad_matrix) <- c("Pilot grade", "Mustache grade")
bad_matrix

Pilot grade Mustache grade
Wedge "1" "F"
Biggs "2" "A"

bad_matrix["Biggs", , drop=FALSE]

Pilot grade Mustache grade
Biggs "2" "A"

36 / 60

Matrix Arithmetic
Matrices of the same dimensions can have math performed entry-wise with
the usual arithmetic operators:

cbind(c_matrix, d_matrix) # look at side by side

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 3 5 1 2 3
[2,] 2 4 6 4 5 6

3 * c_matrix / d_matrix

[,1] [,2] [,3]
[1,] 3.0 4.5 5
[2,] 1.5 2.4 3

37 / 60

Matrix Transposition and

Multiplication
To do matrix transpositions, use t() .

(e_matrix <- t(c_matrix))

[,1] [,2]
[1,] 1 2
[2,] 3 4
[3,] 5 6

To do actual matrix multiplication (not entry-wise), use %*% .

(f_matrix <- d_matrix %*% e_matrix)

[,1] [,2]
[1,] 22 28
[2,] 49 64

38 / 60

Matrix Inversion
To invert an invertible square matrix, use solve() .

(g_matrix <- solve(f_matrix))

[,1] [,2]
[1,] 1.777778 -0.7777778
[2,] -1.361111 0.6111111

f_matrix %*% g_matrix

[,1] [,2]
[1,] 1 -3.552714e-15
[2,] 0 1.000000e+00

Note the floating point imprecision: The off-diagonals are very close to zero
rather than actually zero!

Be careful testing for equality of numbers after calculations--imprecision
produces strange results!

39 / 60

https://floating-point-gui.de/basic/

Diagonal Matrices
To extract the diagonal of a matrix or make a diagonal matrix (usually the
identity matrix), use diag() .

diag(2)

[,1] [,2]
[1,] 1 0
[2,] 0 1

diag(g_matrix)

[1] 1.7777778 0.6111111

40 / 60

Lists

41 / 60

What are Lists?
Lists are an object that can store multiple types of data.

(my_list <- list("first_thing" = 1:5,
 "second_thing" = matrix(8:11, nrow = 2),
 "third_thing" = lm(dist ~ speed, data = cars)))

$first_thing
[1] 1 2 3 4 5

$second_thing
[,1] [,2]
[1,] 8 10
[2,] 9 11

$third_thing

Call:
lm(formula = dist ~ speed, data = cars)

Coefficients:
(Intercept) speed
-17.579 3.932

42 / 60

Accessing List Elements
You can access a list element by its name or number in [[]] , or a $ followed
by its name:

my_list[["first_thing"]]

[1] 1 2 3 4 5

my_list$first_thing

[1] 1 2 3 4 5

my_list[[1]]

[1] 1 2 3 4 5

43 / 60

Why Two Brackets [[]]?
If you use single brackets to access list elements, you get a list back. Double
brackets get the actual element—as whatever data type it is stored as—in that
location in the list.

str(my_list[1])

List of 1
$ first_thing: int [1:5] 1 2 3 4 5

str(my_list[[1]])

int [1:5] 1 2 3 4 5

Note that you can only select a single element at a time using [[]] , because
this would have to return multiple objects!

An R function can only return one object at a time—otherwise operations like
assignment would be impossible.

44 / 60

[x] versus [[x]]

[x] chooses elements but keeps the list, while [[x]] extracts the element
from the list.

Source: Hadley Wickham

45 / 60

Subsetted Lists Can Be of

Length > 1
You can use vector-style subsetting to get a sublist of multiple elements:

length(my_list[c(1, 2)])

[1] 2

str(my_list[c(1, 2)])

List of 2
$ first_thing : int [1:5] 1 2 3 4 5
$ second_thing: int [1:2, 1:2] 8 9 10 11

46 / 60

Regression Output is a List!
str(my_list[[3]], list.len=7) # Displaying on first 7 elements

List of 12
$ coefficients : Named num [1:2] -17.58 3.93
..- attr(*, "names")= chr [1:2] "(Intercept)" "speed"
$ residuals : Named num [1:50] 3.85 11.85 -5.95 12.05 2.12 ...
..- attr(*, "names")= chr [1:50] "1" "2" "3" "4" ...
$ effects : Named num [1:50] -303.914 145.552 -8.115 9.885 0.194 ...
..- attr(*, "names")= chr [1:50] "(Intercept)" "speed" "" "" ...
$ rank : int 2
$ fitted.values: Named num [1:50] -1.85 -1.85 9.95 9.95 13.88 ...
..- attr(*, "names")= chr [1:50] "1" "2" "3" "4" ...
$ assign : int [1:2] 0 1
$ qr :List of 5
..$ qr : num [1:50, 1:2] -7.071 0.141 0.141 0.141 0.141 ...
.. ..- attr(*, "dimnames")=List of 2
..$: chr [1:50] "1" "2" "3" "4" ...
..$: chr [1:2] "(Intercept)" "speed"
.. ..- attr(*, "assign")= int [1:2] 0 1
..$ qraux: num [1:2] 1.14 1.27
..$ pivot: int [1:2] 1 2
..$ tol : num 1e-07
..$ rank : int 2
..- attr(*, "class")= chr "qr"
[list output truncated]
- attr(*, "class")= chr "lm"

47 / 60

names() and List Elements
You can use names() to get a vector of list element names:

names(my_list[[3]])

[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

48 / 60

Data Frames are Lists!
data frames are lists of equal-length vectors.

str(cars)

'data.frame': 50 obs. of 2 variables:
$ speed: num 4 4 7 7 8 9 10 10 10 11 ...
$ dist : num 2 10 4 22 16 10 18 26 34 17 ...

length(cars)

[1] 2

length(cars$dist) # should be same as nrow(cars)

[1] 50

49 / 60

You Can Treat Data Frames

like a Matrix
cars[1,]

speed dist
1 4 2

cars[1:5, "speed", drop = FALSE]

speed
1 4
2 4
3 7
4 7
5 8

50 / 60

Base R vs. dplyr
Two ways of calculating the same thing: which do you like better?

Classic R:

mean(swiss[swiss$Education > mean(swiss$Education), "Education"])

dplyr :

library(dplyr)
swiss %>%
 filter(Education > mean(Education)) %>%
 summarize(mean = mean(Education))

51 / 60

swiss %>% select(2:3) %>% head()

Agriculture Examination
Courtelary 17.0 15
Delemont 45.1 6
Franches-Mnt 39.7 5
Moutier 36.5 12
Neuveville 43.5 17
Porrentruy 35.3 9

swiss %>% select(2:3) %>%
 as_tibble(rownames="Name") %>% head()

A tibble: 6 x 3
Name Agriculture Examination
<chr> <dbl> <int>
1 Courtelary 17 15
2 Delemont 45.1 6
3 Franches-Mnt 39.7 5
4 Moutier 36.5 12
5 Neuveville 43.5 17
6 Porrentruy 35.3 9

Tibbles
tidyverse functions often use a type of data frame called a tibble. You can create them
manually with tibble() as with data.frame() or convert existing data frames into
tibbles using as_tibble() . Tibbles display better than data frames: they truncate output
and include column types. They also do not convert strings to factors!

Because the tidyverse has abolished row names, tibbles() have none. You can convert
row names to columns using tibble::rownames_to_column() or with the rownames=
argument in as_tibble() .

52 / 60

An Aside

for People with Statistics Training

53 / 60

Getting Fitted Regression

Coef�cients
Recall that my_list[[3]] is output from a regression model.

my_list[[3]][["coefficients"]]

(Intercept) speed
-17.579095 3.932409

(speed_beta <- my_list[[3]][["coefficients"]]["speed"])

speed
3.932409

54 / 60

Regression Summaries
summary(lm_object) is also a list with more information, which has the side
effect of printing some output to the console:

summary(my_list[[3]]) # this prints output

Call:
lm(formula = dist ~ speed, data = cars)

Residuals:
Min 1Q Median 3Q Max
-29.069 -9.525 -2.272 9.215 43.201

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.5791 6.7584 -2.601 0.0123 *
speed 3.9324 0.4155 9.464 1.49e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.38 on 48 degrees of freedom
Multiple R-squared: 0.6511, Adjusted R-squared: 0.6438
F-statistic: 89.57 on 1 and 48 DF, p-value: 1.49e-12

55 / 60

Getting Standard Errors
summary(my_list[[3]])[["coefficients"]] # a matrix

Estimate Std. Error t value Pr(>|t|)
(Intercept) -17.579095 6.7584402 -2.601058 1.231882e-02
speed 3.932409 0.4155128 9.463990 1.489836e-12

(speed_SE <- summary(my_list[[3]])[["coefficients"]]["speed", "Std. Error"])

[1] 0.4155128

56 / 60

Example: 95% con�dence

interval
speed_CI <- speed_beta + c(-qnorm(0.975), qnorm(0.975)) * speed_SE
names(speed_CI) <- c("lower", "upper")

Now you can include these values in a Markdown document:

A 1 mph increase in speed is associated with a `r
round(speed_beta, 1)` ft increase in stopping distance
(95% CI: (`r round(speed_CI["lower"],1)`,
 `r round(speed_CI["upper"],1)`)).

A 1 mph increase in speed is associated with a 3.9 ft increase in stopping
distance (95% CI: (3.1, 4.7)).

qnorm(0.975) is 1.96

57 / 60

Practice and Homework

58 / 60

Suggested Practice: swirl
You can do interactive R tutorials in swirl that cover these structure basics.
To set up swirl :

1. install.packages("swirl")
2. library(swirl)
3. swirl()
4. Choose R Programming , pick a tutorial, and follow directions
5. To get out of swirl , type bye() in the middle of a lesson, or 0 in the

menus

At this point, tutorials 1-8 are appropriate.

59 / 60

Homework: Two Choices
Data Structure Practice (Less Advanced):

Fill in a template R Markdown file that walks you through creating, accessing,
and manipulating R data structures. Enter values in the R Markdown
document and knit it to check your answers. Knit after entering each answer.
If you get an error, check to see if undoing your last edit solves the problem;
coding an assignment to handle all possible mistakes is really hard! This
assignment is also long, so start early.

Manual Linear Regression (More Advanced)

Fill in a template R markdown file that walks you through (1) doing linear
regression manually and (2) comparing it to the built-in lm() function.
Includes simulating data and creating and modifying data structures. Knit
after entering each answer. This assignment does not check answers as you go.
This is also long, so start early!

60 / 60

