
CSSS508, Week 3

Manipulating and Summarizing Data

Chuck Lanfear

Apr 14, 2021

Updated: Apr 18, 2021

Death to Spreadsheets
Today we'll talk more about dplyr : a package that does in R just about any
calculation you've tried to do in Excel, but more transparently, reproducibly,
and safely.

Don't be the next sad research assistant who makes headlines with an Excel
error (Reinhart & Rogoff, 2010)

2 / 50

http://www.bloomberg.com/news/articles/2013-04-18/faq-reinhart-rogoff-and-the-excel-error-that-changed-history

Modifying Data Frames with

dplyr

3 / 50

But First, Pipes (%>%)
dplyr uses the magrittr forward pipe operator, usually called simply a
pipe. We write pipes like %>% (Ctrl+Shift+M).

Pipes take the object on the left and apply the function on the right: x %>%
f(y) = f(x, y) . Read out loud: "and then..."

library(dplyr)
library(gapminder)
gapminder %>% filter(country == "Canada") %>% head(2)

A tibble: 2 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 Canada Americas 1952 68.8 14785584 11367.
2 Canada Americas 1957 70.0 17010154 12490.

Pipes save us typing, make code readable, and allow chaining like above, so
we use them all the time when manipulating data frames.

4 / 50

https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html

Using Pipes
Pipes are clearer to read when you have each function on a separate line
(inconsistent in these slides because of space constraints).

take_these_data %>%
 do_first_thing(with = this_value) %>%
 do_next_thing(using = that_value) %>% ...

Stuff to the left of the pipe is passed to the first argument of the function on
the right. Other arguments go on the right in the function.

If you ever find yourself piping a function where data are not the first
argument, use . in the data argument instead.

yugoslavia %>% lm(pop ~ year, data = .)

5 / 50

Pipe Assignment
When creating a new object from the output of piped functions, place the
assignment operator at the beginning.

lm_pop_year <- gapminder %>%
 filter(continent == "Americas") %>%
 lm(pop ~ year, data = .)

No matter how long the chain of functions is, assignment is always done at the
top.1

[1] Note this is just a stylistic convention: If you prefer, you can do assignment at the
end of the chain.

6 / 50

Filtering Rows (subsetting)
Recall last week we used the filter() command to subset data like so:

Canada <- gapminder %>%
 filter(country == "Canada")
head(Canada)

A tibble: 6 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 Canada Americas 1952 68.8 14785584 11367.
2 Canada Americas 1957 70.0 17010154 12490.
3 Canada Americas 1962 71.3 18985849 13462.
4 Canada Americas 1967 72.1 20819767 16077.
5 Canada Americas 1972 72.9 22284500 18971.
6 Canada Americas 1977 74.2 23796400 22091.

Excel analogue: Filter!

7 / 50

Another Operator: %in%
Common use case: Filter rows to things in some set.

We can use %in% like == but for matching any element in the vector on its
right1.

former_yugoslavia <- c("Bosnia and Herzegovina", "Croatia",
 "Montenegro", "Serbia", "Slovenia")
yugoslavia <- gapminder %>% filter(country %in% former_yugoslavia)
tail(yugoslavia, 2)

A tibble: 2 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 Slovenia Europe 2002 76.7 2011497 20660.
2 Slovenia Europe 2007 77.9 2009245 25768.

[1] The c() function is how we make vectors in R, which are an important data type.

8 / 50

distinct()
You can see all the unique values in your data for combinations of columns
using distinct() :

gapminder %>% distinct(continent, year)

A tibble: 60 x 2
continent year
<fct> <int>
1 Asia 1952
2 Asia 1957
3 Asia 1962
4 Asia 1967
5 Asia 1972
6 Asia 1977
7 Asia 1982
8 Asia 1987
9 Asia 1992
10 Asia 1997
... with 50 more rows

9 / 50

distinct() drops unused variables!

Note that the default behavior of distinct() is to drop all unspecified
columns. If you want to get distinct rows by certain variables without
dropping the others, use distinct(.keep_all=TRUE) :

gapminder %>% distinct(continent, year, .keep_all=TRUE)

A tibble: 60 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 Afghanistan Asia 1952 28.8 8425333 779.
2 Afghanistan Asia 1957 30.3 9240934 821.
3 Afghanistan Asia 1962 32.0 10267083 853.
4 Afghanistan Asia 1967 34.0 11537966 836.
5 Afghanistan Asia 1972 36.1 13079460 740.
6 Afghanistan Asia 1977 38.4 14880372 786.
7 Afghanistan Asia 1982 39.9 12881816 978.
8 Afghanistan Asia 1987 40.8 13867957 852.
9 Afghanistan Asia 1992 41.7 16317921 649.
10 Afghanistan Asia 1997 41.8 22227415 635.
... with 50 more rows

10 / 50

Sampling Rows: sample_n()
We can also filter at random to work with a smaller dataset using
sample_n() or sample_frac() .

set.seed(413) # makes random numbers repeatable
yugoslavia %>% sample_n(size = 6, replace = FALSE)

A tibble: 6 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 Bosnia and Herzegovina Europe 1987 71.1 4338977 4314.
2 Bosnia and Herzegovina Europe 1967 64.8 3585000 2172.
3 Montenegro Europe 2002 74.0 720230 6557.
4 Montenegro Europe 1987 74.9 569473 11733.
5 Slovenia Europe 1952 65.6 1489518 4215.
6 Serbia Europe 1982 70.2 9032824 15181.

Use set.seed() to make all random numbers in a file come up exactly the same each
time it is run. Read Details in ?set.seed if you like your brain to hurt.

11 / 50

Sorting: arrange()
Along with filtering the data to see certain rows, we might want to sort it:

yugoslavia %>% arrange(year, desc(pop))

A tibble: 60 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 Serbia Europe 1952 58.0 6860147 3581.
2 Croatia Europe 1952 61.2 3882229 3119.
3 Bosnia and Herzegovina Europe 1952 53.8 2791000 974.
4 Slovenia Europe 1952 65.6 1489518 4215.
5 Montenegro Europe 1952 59.2 413834 2648.
6 Serbia Europe 1957 61.7 7271135 4981.
7 Croatia Europe 1957 64.8 3991242 4338.
8 Bosnia and Herzegovina Europe 1957 58.4 3076000 1354.
9 Slovenia Europe 1957 67.8 1533070 5862.
10 Montenegro Europe 1957 61.4 442829 3682.
... with 50 more rows

The data are sorted by ascending year and descending pop .

12 / 50

Keeping Columns: select()
Not only can we limit rows, but we can include specific columns (and put
them in the order listed) using select() .

yugoslavia %>% select(country, year, pop) %>% head(4)

A tibble: 4 x 3
country year pop
<fct> <int> <int>
1 Bosnia and Herzegovina 1952 2791000
2 Bosnia and Herzegovina 1957 3076000
3 Bosnia and Herzegovina 1962 3349000
4 Bosnia and Herzegovina 1967 3585000

13 / 50

Dropping Columns: select()
We can instead drop only specific columns with select() using - signs:

yugoslavia %>% select(-continent, -pop, -lifeExp) %>% head(4)

A tibble: 4 x 3
country year gdpPercap
<fct> <int> <dbl>
1 Bosnia and Herzegovina 1952 974.
2 Bosnia and Herzegovina 1957 1354.
3 Bosnia and Herzegovina 1962 1710.
4 Bosnia and Herzegovina 1967 2172.

14 / 50

Helper Functions for select()
select() has a variety of helper functions like starts_with() ,
ends_with() , and contains() , or can be given a range of contiguous
columns startvar:endvar . See ?select for details.

These are very useful if you have a "wide" data frame with column names
following a pattern or ordering.

DYS %>% select(starts_with("married"))
DYS %>% select(ends_with("18"))

15 / 50

select(where())
An especially useful helper for select is where() which can be used for
selecting columns based on functions that check column types.

gapminder %>% select(where(is.numeric)) %>% head(3)

A tibble: 3 x 4
year lifeExp pop gdpPercap
<int> <dbl> <int> <dbl>
1 1952 28.8 8425333 779.
2 1957 30.3 9240934 821.
3 1962 32.0 10267083 853.

gapminder %>% select(where(is.factor)) %>% head(3)

A tibble: 3 x 2
country continent
<fct> <fct>
1 Afghanistan Asia
2 Afghanistan Asia
3 Afghanistan Asia

int (integer) and dbl (double) are both
types of numeric data.

16 / 50

Renaming Columns with select()
We can rename columns using select() , but that drops everything that isn't
mentioned:

yugoslavia %>%
 select(Life_Expectancy = lifeExp) %>%
 head(4)

A tibble: 4 x 1
Life_Expectancy
<dbl>
1 53.8
2 58.4
3 61.9
4 64.8

17 / 50

Safer: Rename Columns with rename()
rename() renames variables using the same syntax as select() without
dropping unmentioned variables.

yugoslavia %>%
 select(country, year, lifeExp) %>%
 rename(Life_Expectancy = lifeExp) %>%
 head(4)

A tibble: 4 x 3
country year Life_Expectancy
<fct> <int> <dbl>
1 Bosnia and Herzegovina 1952 53.8
2 Bosnia and Herzegovina 1957 58.4
3 Bosnia and Herzegovina 1962 61.9
4 Bosnia and Herzegovina 1967 64.8

18 / 50

Column Naming Practices
Good column names will be self-describing. Don't use inscrutable
abbreviations to save typing. RStudio's autocompleting functions take
away the pain of long variable names: Hit TAB while writing code to
autocomplete.

Valid "naked" column names can contain upper or lowercase letters,
numbers, periods, and underscores. They must start with a letter or
period and not be a special reserved word (e.g. TRUE , if).

Names are case-sensitive: Year and year are not the same thing!

You can include spaces or use reserved words if you put backticks around
the name. Spaces can be worth including when preparing data for
ggplot2 or pander since you don't have to rename axes or table
headings.

19 / 50

Column Name with Space Example

library(pander)
yugoslavia %>% filter(country == "Serbia") %>%
 select(year, lifeExp) %>%
 rename(Year = year, `Life Expectancy` = lifeExp) %>%
 head(5) %>%
 pander(style = "rmarkdown", caption = "Serbian life expectancy")

Year Life Expectancy

1952 58

1957 61.69

1962 64.53

1967 66.91

1972 68.7

Table: Serbian life expectancy

20 / 50

Create New Columns: mutate()
In dplyr , you can add new columns to a data frame using mutate() .

yugoslavia %>% filter(country == "Serbia") %>%
 select(year, pop, lifeExp) %>%
 mutate(pop_million = pop / 1000000,
 life_exp_past_40 = lifeExp - 40) %>%
 head(5)

A tibble: 5 x 5
year pop lifeExp pop_million life_exp_past_40
<int> <int> <dbl> <dbl> <dbl>
1 1952 6860147 58.0 6.86 18.0
2 1957 7271135 61.7 7.27 21.7
3 1962 7616060 64.5 7.62 24.5
4 1967 7971222 66.9 7.97 26.9
5 1972 8313288 68.7 8.31 28.7

Note you can create multiple variables in a single mutate() call by separating
the expressions with commas.

21 / 50

ifelse()
A common function used in mutate() (and in general in R programming) is
ifelse() . It returns a vector of values depending on a logical test.

ifelse(test = x==y, yes = first_value , no = second_value)

Output from ifelse() if x==y is...

TRUE : first_value - the value for yes =

FALSE : second_value - the value for no =

NA : NA - because you can't test for NA with an equality!

For example:

example <- c(1, 0, NA, -2)
ifelse(example > 0, "Positive", "Not Positive")

[1] "Positive" "Not Positive" NA "Not Positive"

22 / 50

ifelse() Example
yugoslavia %>% mutate(short_country =
 ifelse(country == "Bosnia and Herzegovina",
 "B and H", as.character(country))) %>%
 select(country, short_country, year, pop) %>%
 arrange(year, short_country) %>% head(3)

A tibble: 3 x 4
country short_country year pop
<fct> <chr> <int> <int>
1 Bosnia and Herzegovina B and H 1952 2791000
2 Croatia Croatia 1952 3882229
3 Montenegro Montenegro 1952 413834

Read this as "For each row, if country equals 'Bosnia and Herzegovina, make
short_country equal to 'B and H', otherwise make it equal to that row's
value of country ."

This is a simple way to change some values but not others!

Note: country is a factor--use as.character() to convert to character.

23 / 50

recode()
recode() is another useful function to use inside mutate() . Use recode()
to change specific values to other values, particularly with factors. You can
change multiple values at the same time. Note if a value has spaces in it, you'll
need to put it in backticks!

yugoslavia %>%
 mutate(country = recode(country,
 `Bosnia and Herzegovina`="B and H",
 Montenegro="M")) %>%
 distinct(country)

A tibble: 5 x 1
country
<fct>
1 B and H
2 Croatia
3 M
4 Serbia
5 Slovenia

24 / 50

case_when()
case_when() performs multiple ifelse() operations at the same time.
case_when() allows you to create a new variable with values based on
multiple logical statements. This is useful for making categorical variables or
variables from combinations of other variables.

gapminder %>%
 mutate(gdpPercap_ordinal =
 case_when(
 gdpPercap < 700 ~ "low",
 gdpPercap >= 700 & gdpPercap < 800 ~ "moderate",
 TRUE ~ "high")) %>% # Value when all other statements are FALSE
 slice(6:9) # get rows 6 through 9

A tibble: 4 x 7
country continent year lifeExp pop gdpPercap gdpPercap_ordinal
<fct> <fct> <int> <dbl> <int> <dbl> <chr>
1 Afghanistan Asia 1977 38.4 14880372 786. moderate
2 Afghanistan Asia 1982 39.9 12881816 978. high
3 Afghanistan Asia 1987 40.8 13867957 852. high
4 Afghanistan Asia 1992 41.7 16317921 649. low

25 / 50

pull()
Sometimes you want to extract a single column from a data frame as a vector
(or single value).

pull() pulls a column of a data frame out as a vector.

gapminder %>% pull(lifeExp) %>% head(4)

[1] 28.801 30.332 31.997 34.020

gapminder %>% select(lifeExp) %>% head(4)

A tibble: 4 x 1
lifeExp
<dbl>
1 28.8
2 30.3
3 32.0
4 34.0

Note the difference between these two
operations: The second yields only one
column but is still a data frame.

26 / 50

In-Line pull()
pull() is particularly useful when you want to use a vector-only command
in a dplyr chain of functions (say, in an in-line expression).

This in-line code...

The average life expectancy in Afghanistan from 1952 to 2007
was ` r gapminder %>% filter(country=="Afghanistan") %>%
pull(lifeExp) %>% mean() %>% round(1)` years.

... will produce this output:

The average life expectancy in Afghanistan from 1952 to 2007 was 37.5 years.

mean() can only take a vector input, not a dataframe, so this won't work with
select(lifeExp) instead of pull(lifeExp) .

27 / 50

Summarizing with dplyr

28 / 50

General Aggregation: summarize()
summarize() takes your column(s) of data and computes something using
every row:

Count how many rows there are
Calculate the mean
Compute the sum
Obtain a minimum or maximum value

You can use any function in summarize() that aggregates multiple values into
a single value (like sd() , mean() , or max()).

29 / 50

summarize() Example
For the year 1982, let's get the number of observations, total population, mean
life expectancy, and range of life expectancy for former Yugoslavian
countries.

yugoslavia %>%
 filter(year == 1982) %>%
 summarize(n_obs = n(),
 total_pop = sum(pop),
 mean_life_exp = mean(lifeExp),
 range_life_exp = max(lifeExp) - min(lifeExp))

A tibble: 1 x 4
n_obs total_pop mean_life_exp range_life_exp
<int> <int> <dbl> <dbl>
1 5 20042685 71.3 3.94

These new variables are calculated using all of the rows in yugoslavia

30 / 50

Avoiding Repetition
summarize(across())
Maybe you need to calculate the mean and standard deviation of a bunch of
columns. With across() , put the variables to compute over first (using c()
or select() syntax) and put the functions to use in a list() after.

yugoslavia %>%
 filter(year == 1982) %>%
 summarize(across(c(lifeExp, pop), list(avg = ~mean(.), sd = ~sd(.))))

A tibble: 1 x 4
lifeExp_avg lifeExp_sd pop_avg pop_sd
<dbl> <dbl> <dbl> <dbl>
1 71.3 1.60 4008537 3237282.

Note it automatically names the summarized variables based on the names
given in list() .

31 / 50

Whoa, too many (and)
It can get hard to read code with lots of nested functions--functions inside
others.

Break things up when it gets confusing!

yugoslavia %>%
 filter(year == 1982) %>%
 summarize(
 across(
 c(lifeExp, pop),
 list(
 avg = ~mean(.),
 sd = ~sd(.)
)
)
)

RStudio also helps you by tracking parentheses: Put your cursor after a) and
see!

32 / 50

Avoiding Repetition
There are additional ways to use across() for repetitive operations:

across(everything()) will summarize / mutate all variables sent to it
in the same way. For instance, getting the mean and standard deviation of
an entire dataframe:

dataframe %>%
 summarize(across(everything(), list(mean = ~mean(.), sd = ~sd(.))))

across(where()) will summarize / mutate all variables that satisfy
some logical condition. For instance, summarizing every numeric column
in a dataframe at once:

dataframe %>%
 summarize(across(where(is.numeric), list(mean = ~mean(.), sd = ~sd(.))))

You can use all of these to avoid typing out the same code repeatedly!

33 / 50

group_by()
The special function group_by() changes how functions operate on the data,
most importantly summarize() .

Functions after group_by() are computed within each group as defined by
variables given, rather than over all rows at once. Typically the variables you
group by will be integers, factors, or characters, and not continuous real
values.

Excel analogue: pivot tables

34 / 50

group_by() example
yugoslavia %>%
 group_by(year) %>%
 summarize(num_countries = n_distinct(country),
 total_pop = sum(pop),
 total_gdp_per_cap = sum(pop*gdpPercap)/total_pop) %>%
 head(5)

A tibble: 5 x 4
year num_countries total_pop total_gdp_per_cap
<int> <int> <int> <dbl>
1 1952 5 15436728 3030.
2 1957 5 16314276 4187.
3 1962 5 17099107 5257.
4 1967 5 17878535 6656.
5 1972 5 18579786 8730.

Because we did group_by() with year then used summarize() , we get one
row per value of year !

Each value of year is its own group!
35 / 50

Window Functions
Grouping can also be used with mutate() or filter() to give rank orders
within a group, lagged values, and cumulative sums. You can read more about
window functions in this vignette.

yugoslavia %>%
 select(country, year, pop) %>%
 filter(year >= 2002) %>%
 group_by(country) %>%
 mutate(lag_pop = lag(pop, order_by = year),
 pop_chg = pop - lag_pop) %>%
 head(4)

A tibble: 4 x 5
Groups: country [2]
country year pop lag_pop pop_chg
<fct> <int> <int> <int> <int>
1 Bosnia and Herzegovina 2002 4165416 NA NA
2 Bosnia and Herzegovina 2007 4552198 4165416 386782
3 Croatia 2002 4481020 NA NA
4 Croatia 2007 4493312 4481020 12292

36 / 50

https://cran.r-project.org/web/packages/dplyr/vignettes/window-functions.html

Joining (Merging) Data Frames

37 / 50

When Do We Need to Join Tables?
Want to make columns using criteria too complicated for ifelse() or
case_when()

We can work with small sets of variables then combine them back
together.

Combine data stored in separate data sets: e.g. UW registrar data with
police stop records.

Often large surveys are broken into different data sets for each level
(e.g. household, individual, neighborhood)

38 / 50

Joining in Concept
We need to think about the following when we want to merge data frames A
and B :

Which rows are we keeping from each data frame?

Which columns are we keeping from each data frame?

Which variables determine whether rows match?

39 / 50

Join Types: Rows and columns kept
There are many types of joins1...

A %>% left_join(B) : keep all rows from A , matched with B wherever
possible (NA when not), keep columns from both A and B

A %>% right_join(B) : keep all rows from B , matched with A wherever
possible (NA when not), keep columns from both A and B

A %>% inner_join(B) : keep only rows from A and B that match, keep
columns from both A and B

A %>% full_join(B) : keep all rows from both A and B , matched
wherever possible (NA when not), keep columns from both A and B

A %>% semi_join(B) : keep rows from A that match rows in B , keep
columns from only A

A %>% anti_join(B) : keep rows from A that don't match a row in B ,
keep columns from only A

[1] Usually left_join() does the job.

40 / 50

Matching Criteria
We say rows should match because they have some columns containing the
same value. We list these in a by = argument to the join.

Matching Behavior:

No by : Match using all variables in A and B that have identical names

by = c("var1", "var2", "var3") : Match on identical values of var1 ,
var2 , and var3 in both A and B

by = c("Avar1" = "Bvar1", "Avar2" = "Bvar2") : Match identical
values of Avar1 variable in A to Bvar1 variable in B , and Avar2 variable
in A to Bvar2 variable in B

Note: If there are multiple matches, you'll get one row for each possible
combination (except with semi_join() and anti_join()).

Need to get more complicated? Break it into multiple operations.

41 / 50

nycflights13 Data
We'll use data in the nycflights13 package. Install and load it:

install.packages("nycflights13") # Uncomment to run
library(nycflights13)

It includes five dataframes, some of which contain missing data (NA):

flights : flights leaving JFK, LGA, or EWR in 2013
airlines : airline abbreviations
airports : airport metadata
planes : airplane metadata
weather : hourly weather data for JFK, LGA, and EWR

Note these are separate data frames, each needing to be loaded separately:

data(flights)
data(airlines)
data(airports)
and so on...

42 / 50

https://cran.r-project.org/web/packages/nycflights13/nycflights13.pdf

Join Example #1
Who manufactures the planes that flew to Seattle?

flights %>% filter(dest == "SEA") %>% select(tailnum) %>%
 left_join(planes %>% select(tailnum, manufacturer),
 by = "tailnum") %>%
 count(manufacturer) %>% # Count observations by manufacturer
 arrange(desc(n)) # Arrange data descending by count

A tibble: 6 x 2
manufacturer n
<chr> <int>
1 BOEING 2659
2 AIRBUS 475
3 AIRBUS INDUSTRIE 394
4 <NA> 391
5 BARKER JACK L 2
6 CIRRUS DESIGN CORP 2

Note you can perform operations on the data inside functions such as
left_join() and the output will be used by the function.

43 / 50

Join Example #2
Which airlines had the most flights to Seattle from NYC?

flights %>% filter(dest == "SEA") %>%
 select(carrier) %>%
 left_join(airlines, by = "carrier") %>%
 group_by(name) %>%
 tally() %>%
 arrange(desc(n))

A tibble: 5 x 2
name n
<chr> <int>
1 Delta Air Lines Inc. 1213
2 United Air Lines Inc. 1117
3 Alaska Airlines Inc. 714
4 JetBlue Airways 514
5 American Airlines Inc. 365

tally() is a shortcut for summarize(n(.)) : It creates a variable n equal to
the number of rows in each group.

44 / 50

Join Example #3
Is there a relationship between departure delays and wind gusts?

library(ggplot2)
flights %>%
 select(origin, year, month, day, hour, dep_delay) %>%
 inner_join(weather,
 by = c("origin", "year", "month", "day", "hour")) %>%
 select(dep_delay, wind_gust) %>%
 # removing rows with missing values
 filter(!is.na(dep_delay) & !is.na(wind_gust)) %>%
 ggplot(aes(x = wind_gust, y = dep_delay)) +
 geom_point() +
 geom_smooth()

Because the data are the first argument for ggplot() , we can pipe them
straight into a plot.

45 / 50

Wind Gusts and Delays

Check out those 1200 mph winds!1

[1] These observations appear to have been fixed in the current data.

46 / 50

Redo After Removing Extreme

Outliers, Just Trend
flights %>%
 select(origin, year, month, day, hour, dep_delay) %>%
 inner_join(weather, by = c("origin", "year", "month", "day", "hour")) %>%
 select(dep_delay, wind_gust) %>%
 filter(!is.na(dep_delay) & !is.na(wind_gust) & wind_gust < 250) %>%
 ggplot(aes(x = wind_gust, y = dep_delay)) +
 geom_smooth() +
 theme_bw(base_size = 16) +
 xlab("Wind gusts in departure hour (mph)") +
 ylab("Average departure delay (minutes)")

I removed geom_point() to focus on the mean trend produced by
geom_smooth() .

47 / 50

Wind Gusts and Delays: Mean Trend

48 / 50

Tinkering Suggestions
Some possible questions to investigate:

What are the names of the most common destination airports?
Which airlines fly from NYC to your home city?
Is there a relationship between departure delays and precipitation?
What is the distribution of departure times for flights leaving NYC over a
24 hour period?

Are especially late or early arrivals departures to some regions or for
some airlines?

Warning: flights has 336776 rows, so if you do a sloppy join, you can end
up with many matches per observation and have the data explode in size.

49 / 50

Homework 3
Pick something to look at in the nycflights13 data and write up a .Rmd file
showing your investigation. Upload both the .Rmd file and the .html file to
Canvas. You must use at least once: mutate() , summarize() , group_by() ,
and any join. Include at least one nicely formatted plot (ggplot2) and one table
(pander). In plots and tables, use "nice" variable names (try out spaces!) and
rounded values (<= 3 digits).

This time, include all your code in your output document (echo=TRUE), using
comments and line breaks separating commands so that it is clear to a peer
what you are doing (or trying to do!). You must write up your observations
briefly in words as well.

Note: If you want to see the nycflights13 dataframes in the environment,
you will need to load each one: airlines , airports , flights , planes , and
weather (e.g. data(flights)).

50 / 50

