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Death to Spreadsheets
Today we'll talk more about dplyr : a package that does in R just about any
calculation you've tried to do in Excel, but more transparently, reproducibly,
and safely.

Don't be the next sad research assistant who makes headlines with an Excel
error (Reinhart & Rogoff, 2010)
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http://www.bloomberg.com/news/articles/2013-04-18/faq-reinhart-rogoff-and-the-excel-error-that-changed-history


Modifying Data Frames with

dplyr
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But First, Pipes (%>%)
dplyr  uses the magrittr  forward pipe operator, usually called simply a
pipe. We write pipes like %>%  (Ctrl+Shift+M).

Pipes take the object on the left and apply the function on the right: x %>%
f(y) = f(x, y) . Read out loud: "and then..."

library(dplyr)
library(gapminder)
gapminder %>% filter(country == "Canada") %>% head(2)

## # A tibble: 2 x 6
##   country continent  year lifeExp      pop gdpPercap
##   <fct>   <fct>     <int>   <dbl>    <int>     <dbl>
## 1 Canada  Americas   1952    68.8 14785584    11367.
## 2 Canada  Americas   1957    70.0 17010154    12490.

Pipes save us typing, make code readable, and allow chaining like above, so
we use them all the time when manipulating data frames.
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https://cran.r-project.org/web/packages/magrittr/vignettes/magrittr.html


Using Pipes
Pipes are clearer to read when you have each function on a separate line
(inconsistent in these slides because of space constraints).

take_these_data %>%
    do_first_thing(with = this_value) %>%
    do_next_thing(using = that_value) %>% ...

Stuff to the left of the pipe is passed to the first argument of the function on
the right. Other arguments go on the right in the function.

If you ever find yourself piping a function where data are not the first
argument, use .  in the data argument instead.

yugoslavia %>% lm(pop ~ year, data = .)
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Pipe Assignment
When creating a new object from the output of piped functions, place the
assignment operator at the beginning.

lm_pop_year <- gapminder %>% 
  filter(continent == "Americas") %>%
  lm(pop ~ year, data = .)

No matter how long the chain of functions is, assignment is always done at the
top.1

[1] Note this is just a stylistic convention: If you prefer, you can do assignment at the
end of the chain.
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Filtering Rows (subsetting)
Recall last week we used the filter()  command to subset data like so:

Canada <- gapminder %>%
    filter(country == "Canada")
head(Canada)

## # A tibble: 6 x 6
##   country continent  year lifeExp      pop gdpPercap
##   <fct>   <fct>     <int>   <dbl>    <int>     <dbl>
## 1 Canada  Americas   1952    68.8 14785584    11367.
## 2 Canada  Americas   1957    70.0 17010154    12490.
## 3 Canada  Americas   1962    71.3 18985849    13462.
## 4 Canada  Americas   1967    72.1 20819767    16077.
## 5 Canada  Americas   1972    72.9 22284500    18971.
## 6 Canada  Americas   1977    74.2 23796400    22091.

Excel analogue: Filter!

7 / 50



Another Operator: %in%
Common use case: Filter rows to things in some set.

We can use %in%  like ==  but for matching any element in the vector on its
right1.

former_yugoslavia <- c("Bosnia and Herzegovina", "Croatia", 
                       "Montenegro", "Serbia", "Slovenia")
yugoslavia <- gapminder %>% filter(country %in% former_yugoslavia)
tail(yugoslavia, 2)

## # A tibble: 2 x 6
##   country  continent  year lifeExp     pop gdpPercap
##   <fct>    <fct>     <int>   <dbl>   <int>     <dbl>
## 1 Slovenia Europe     2002    76.7 2011497    20660.
## 2 Slovenia Europe     2007    77.9 2009245    25768.

[1] The c()  function is how we make vectors in R, which are an important data type.
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distinct()
You can see all the unique values in your data for combinations of columns
using distinct() :

gapminder %>% distinct(continent, year)

## # A tibble: 60 x 2
##    continent  year
##    <fct>     <int>
##  1 Asia       1952
##  2 Asia       1957
##  3 Asia       1962
##  4 Asia       1967
##  5 Asia       1972
##  6 Asia       1977
##  7 Asia       1982
##  8 Asia       1987
##  9 Asia       1992
## 10 Asia       1997
## # ... with 50 more rows
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distinct() drops unused variables!

Note that the default behavior of distinct()  is to drop all unspecified
columns. If you want to get distinct rows by certain variables without
dropping the others, use distinct(.keep_all=TRUE) :

gapminder %>% distinct(continent, year, .keep_all=TRUE)

## # A tibble: 60 x 6
##    country     continent  year lifeExp      pop gdpPercap
##    <fct>       <fct>     <int>   <dbl>    <int>     <dbl>
##  1 Afghanistan Asia       1952    28.8  8425333      779.
##  2 Afghanistan Asia       1957    30.3  9240934      821.
##  3 Afghanistan Asia       1962    32.0 10267083      853.
##  4 Afghanistan Asia       1967    34.0 11537966      836.
##  5 Afghanistan Asia       1972    36.1 13079460      740.
##  6 Afghanistan Asia       1977    38.4 14880372      786.
##  7 Afghanistan Asia       1982    39.9 12881816      978.
##  8 Afghanistan Asia       1987    40.8 13867957      852.
##  9 Afghanistan Asia       1992    41.7 16317921      649.
## 10 Afghanistan Asia       1997    41.8 22227415      635.
## # ... with 50 more rows

10 / 50



Sampling Rows: sample_n()
We can also filter at random to work with a smaller dataset using
sample_n()  or sample_frac() .

set.seed(413) # makes random numbers repeatable
yugoslavia %>% sample_n(size = 6, replace = FALSE)

## # A tibble: 6 x 6
##   country                continent  year lifeExp     pop gdpPercap
##   <fct>                  <fct>     <int>   <dbl>   <int>     <dbl>
## 1 Bosnia and Herzegovina Europe     1987    71.1 4338977     4314.
## 2 Bosnia and Herzegovina Europe     1967    64.8 3585000     2172.
## 3 Montenegro             Europe     2002    74.0  720230     6557.
## 4 Montenegro             Europe     1987    74.9  569473    11733.
## 5 Slovenia               Europe     1952    65.6 1489518     4215.
## 6 Serbia                 Europe     1982    70.2 9032824    15181.

Use set.seed()  to make all random numbers in a file come up exactly the same each
time it is run. Read Details in ?set.seed  if you like your brain to hurt.
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Sorting: arrange()
Along with filtering the data to see certain rows, we might want to sort it:

yugoslavia %>% arrange(year, desc(pop))

## # A tibble: 60 x 6
##    country                continent  year lifeExp     pop gdpPercap
##    <fct>                  <fct>     <int>   <dbl>   <int>     <dbl>
##  1 Serbia                 Europe     1952    58.0 6860147     3581.
##  2 Croatia                Europe     1952    61.2 3882229     3119.
##  3 Bosnia and Herzegovina Europe     1952    53.8 2791000      974.
##  4 Slovenia               Europe     1952    65.6 1489518     4215.
##  5 Montenegro             Europe     1952    59.2  413834     2648.
##  6 Serbia                 Europe     1957    61.7 7271135     4981.
##  7 Croatia                Europe     1957    64.8 3991242     4338.
##  8 Bosnia and Herzegovina Europe     1957    58.4 3076000     1354.
##  9 Slovenia               Europe     1957    67.8 1533070     5862.
## 10 Montenegro             Europe     1957    61.4  442829     3682.
## # ... with 50 more rows

The data are sorted by ascending year  and descending pop .

12 / 50



Keeping Columns: select()
Not only can we limit rows, but we can include specific columns (and put
them in the order listed) using select() .

yugoslavia %>% select(country, year, pop) %>% head(4)

## # A tibble: 4 x 3
##   country                 year     pop
##   <fct>                  <int>   <int>
## 1 Bosnia and Herzegovina  1952 2791000
## 2 Bosnia and Herzegovina  1957 3076000
## 3 Bosnia and Herzegovina  1962 3349000
## 4 Bosnia and Herzegovina  1967 3585000
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Dropping Columns: select()
We can instead drop only specific columns with select()  using -  signs:

yugoslavia %>% select(-continent, -pop, -lifeExp) %>% head(4)

## # A tibble: 4 x 3
##   country                 year gdpPercap
##   <fct>                  <int>     <dbl>
## 1 Bosnia and Herzegovina  1952      974.
## 2 Bosnia and Herzegovina  1957     1354.
## 3 Bosnia and Herzegovina  1962     1710.
## 4 Bosnia and Herzegovina  1967     2172.
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Helper Functions for select()
select()  has a variety of helper functions like starts_with() ,
ends_with() , and contains() , or can be given a range of contiguous
columns startvar:endvar . See ?select  for details.

These are very useful if you have a "wide" data frame with column names
following a pattern or ordering.

DYS %>% select(starts_with("married"))
DYS %>% select(ends_with("18"))
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select(where())
An especially useful helper for select is where()  which can be used for
selecting columns based on functions that check column types.

gapminder %>% select(where(is.numeric)) %>% head(3)

## # A tibble: 3 x 4
##    year lifeExp      pop gdpPercap
##   <int>   <dbl>    <int>     <dbl>
## 1  1952    28.8  8425333      779.
## 2  1957    30.3  9240934      821.
## 3  1962    32.0 10267083      853.

gapminder %>% select(where(is.factor)) %>% head(3)

## # A tibble: 3 x 2
##   country     continent
##   <fct>       <fct>    
## 1 Afghanistan Asia     
## 2 Afghanistan Asia     
## 3 Afghanistan Asia

int  (integer) and dbl  (double) are both
types of numeric  data.
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Renaming Columns with select()
We can rename columns using select() , but that drops everything that isn't
mentioned:

yugoslavia %>%
    select(Life_Expectancy = lifeExp) %>%
    head(4)

## # A tibble: 4 x 1
##   Life_Expectancy
##             <dbl>
## 1            53.8
## 2            58.4
## 3            61.9
## 4            64.8
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Safer: Rename Columns with rename()
rename()  renames variables using the same syntax as select()  without
dropping unmentioned variables.

yugoslavia %>%
    select(country, year, lifeExp) %>%
    rename(Life_Expectancy = lifeExp) %>%
    head(4)

## # A tibble: 4 x 3
##   country                 year Life_Expectancy
##   <fct>                  <int>           <dbl>
## 1 Bosnia and Herzegovina  1952            53.8
## 2 Bosnia and Herzegovina  1957            58.4
## 3 Bosnia and Herzegovina  1962            61.9
## 4 Bosnia and Herzegovina  1967            64.8
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Column Naming Practices
Good column names will be self-describing. Don't use inscrutable
abbreviations to save typing. RStudio's autocompleting functions take
away the pain of long variable names: Hit TAB  while writing code to
autocomplete.

Valid "naked" column names can contain upper or lowercase letters,
numbers, periods, and underscores. They must start with a letter or
period and not be a special reserved word (e.g. TRUE , if).

Names are case-sensitive: Year  and year  are not the same thing!

You can include spaces or use reserved words if you put backticks around
the name. Spaces can be worth including when preparing data for
ggplot2  or pander  since you don't have to rename axes or table
headings.
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Column Name with Space Example

library(pander)
yugoslavia %>% filter(country == "Serbia") %>%
    select(year, lifeExp) %>%
    rename(Year = year, `Life Expectancy` = lifeExp) %>%
    head(5) %>%
    pander(style = "rmarkdown", caption = "Serbian life expectancy")

Year Life Expectancy

1952 58

1957 61.69

1962 64.53

1967 66.91

1972 68.7

Table: Serbian life expectancy
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Create New Columns: mutate()
In dplyr , you can add new columns to a data frame using mutate() .

yugoslavia %>% filter(country == "Serbia") %>%
    select(year, pop, lifeExp) %>%
    mutate(pop_million = pop / 1000000,
           life_exp_past_40 = lifeExp - 40) %>%
    head(5)

## # A tibble: 5 x 5
##    year     pop lifeExp pop_million life_exp_past_40
##   <int>   <int>   <dbl>       <dbl>            <dbl>
## 1  1952 6860147    58.0        6.86             18.0
## 2  1957 7271135    61.7        7.27             21.7
## 3  1962 7616060    64.5        7.62             24.5
## 4  1967 7971222    66.9        7.97             26.9
## 5  1972 8313288    68.7        8.31             28.7

Note you can create multiple variables in a single mutate()  call by separating
the expressions with commas.
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ifelse()
A common function used in mutate()  (and in general in R programming) is
ifelse() . It returns a vector of values depending on a logical test.

ifelse(test = x==y, yes = first_value , no = second_value)

Output from ifelse()  if x==y  is...

TRUE : first_value  - the value for yes =

FALSE : second_value  - the value for no =

NA : NA  - because you can't test for NA with an equality!

For example:

example <- c(1, 0, NA, -2)
ifelse(example > 0, "Positive", "Not Positive")

## [1] "Positive"     "Not Positive" NA             "Not Positive"
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ifelse() Example
yugoslavia %>% mutate(short_country = 
                 ifelse(country == "Bosnia and Herzegovina", 
                        "B and H", as.character(country))) %>%
    select(country, short_country, year, pop) %>%
    arrange(year, short_country) %>% head(3)

## # A tibble: 3 x 4
##   country                short_country  year     pop
##   <fct>                  <chr>         <int>   <int>
## 1 Bosnia and Herzegovina B and H        1952 2791000
## 2 Croatia                Croatia        1952 3882229
## 3 Montenegro             Montenegro     1952  413834

Read this as "For each row, if country  equals 'Bosnia and Herzegovina, make
short_country  equal to 'B and H', otherwise make it equal to that row's
value of country ."

This is a simple way to change some values but not others!

Note: country  is a factor--use as.character()  to convert to character.
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recode()
recode()  is another useful function to use inside mutate() . Use recode()
to change specific values to other values, particularly with factors. You can
change multiple values at the same time. Note if a value has spaces in it, you'll
need to put it in backticks!

yugoslavia %>% 
  mutate(country = recode(country, 
                        `Bosnia and Herzegovina`="B and H",
                        Montenegro="M")) %>% 
  distinct(country)

## # A tibble: 5 x 1
##   country 
##   <fct>   
## 1 B and H 
## 2 Croatia 
## 3 M       
## 4 Serbia  
## 5 Slovenia
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case_when()
case_when()  performs multiple ifelse()  operations at the same time.
case_when()  allows you to create a new variable with values based on
multiple logical statements. This is useful for making categorical variables or
variables from combinations of other variables.

gapminder %>% 
  mutate(gdpPercap_ordinal = 
    case_when(
      gdpPercap <  700 ~ "low",
      gdpPercap >= 700 & gdpPercap < 800 ~ "moderate",
      TRUE ~ "high" )) %>% # Value when all other statements are FALSE
  slice(6:9) # get rows 6 through 9

## # A tibble: 4 x 7
##   country     continent  year lifeExp      pop gdpPercap gdpPercap_ordinal
##   <fct>       <fct>     <int>   <dbl>    <int>     <dbl> <chr>            
## 1 Afghanistan Asia       1977    38.4 14880372      786. moderate         
## 2 Afghanistan Asia       1982    39.9 12881816      978. high             
## 3 Afghanistan Asia       1987    40.8 13867957      852. high             
## 4 Afghanistan Asia       1992    41.7 16317921      649. low
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pull()
Sometimes you want to extract a single column from a data frame as a vector
(or single value).

pull()  pulls a column of a data frame out as a vector.

gapminder %>% pull(lifeExp) %>% head(4)

## [1] 28.801 30.332 31.997 34.020

gapminder %>% select(lifeExp) %>% head(4)

## # A tibble: 4 x 1
##   lifeExp
##     <dbl>
## 1    28.8
## 2    30.3
## 3    32.0
## 4    34.0

Note the difference between these two
operations: The second yields only one
column but is still a data frame.
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In-Line pull()
pull()  is particularly useful when you want to use a vector-only command
in a dplyr  chain of functions (say, in an in-line expression).

This in-line code...

The average life expectancy in Afghanistan from 1952 to 2007
was ` r gapminder %>% filter(country=="Afghanistan") %>%
pull(lifeExp) %>% mean() %>% round(1)`  years.

... will produce this output:

The average life expectancy in Afghanistan from 1952 to 2007 was 37.5 years.

mean()  can only take a vector input, not a dataframe, so this won't work with
select(lifeExp)  instead of pull(lifeExp) .
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Summarizing with dplyr
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General Aggregation: summarize()
summarize()  takes your column(s) of data and computes something using
every row:

Count how many rows there are
Calculate the mean
Compute the sum
Obtain a minimum or maximum value

You can use any function in summarize()  that aggregates multiple values into
a single value (like sd() , mean() , or max()).
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summarize() Example
For the year 1982, let's get the number of observations, total population, mean
life expectancy, and range of life expectancy for former Yugoslavian
countries.

yugoslavia %>%
    filter(year == 1982) %>%
    summarize(n_obs          = n(),
              total_pop      = sum(pop),
              mean_life_exp  = mean(lifeExp),
              range_life_exp = max(lifeExp) - min(lifeExp))

## # A tibble: 1 x 4
##   n_obs total_pop mean_life_exp range_life_exp
##   <int>     <int>         <dbl>          <dbl>
## 1     5  20042685          71.3           3.94

These new variables are calculated using all of the rows in yugoslavia
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Avoiding Repetition
summarize(across())
Maybe you need to calculate the mean and standard deviation of a bunch of
columns. With across() , put the variables to compute over first (using c()
or select()  syntax) and put the functions to use in a list()  after.

yugoslavia %>%
  filter(year == 1982) %>%
  summarize(across(c(lifeExp, pop), list(avg = ~mean(.), sd = ~sd(.))))

## # A tibble: 1 x 4
##   lifeExp_avg lifeExp_sd pop_avg   pop_sd
##         <dbl>      <dbl>   <dbl>    <dbl>
## 1        71.3       1.60 4008537 3237282.

Note it automatically names the summarized variables based on the names
given in list() .
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Whoa, too many ( and )
It can get hard to read code with lots of nested functions--functions inside
others.

Break things up when it gets confusing!

yugoslavia %>%
  filter(year == 1982) %>%
  summarize(
    across( 
      c(lifeExp, pop), 
      list(
        avg = ~mean(.), 
        sd = ~sd(.)
      )
    )
  )

RStudio also helps you by tracking parentheses: Put your cursor after a )  and
see!
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Avoiding Repetition
There are additional ways to use across()  for repetitive operations:

across(everything())  will summarize / mutate all variables sent to it
in the same way. For instance, getting the mean and standard deviation of
an entire dataframe:

dataframe %>% 
  summarize(across(everything(), list(mean = ~mean(.), sd = ~sd(.))))

across(where())  will summarize / mutate all variables that satisfy
some logical condition. For instance, summarizing every numeric column
in a dataframe at once:

dataframe %>% 
  summarize(across(where(is.numeric), list(mean = ~mean(.), sd = ~sd(.))))

You can use all of these to avoid typing out the same code repeatedly!
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group_by()
The special function group_by()  changes how functions operate on the data,
most importantly summarize() .

Functions after group_by()  are computed within each group as defined by
variables given, rather than over all rows at once. Typically the variables you
group by will be integers, factors, or characters, and not continuous real
values.

Excel analogue: pivot tables
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group_by() example
yugoslavia %>%
  group_by(year) %>%
    summarize(num_countries     = n_distinct(country),
              total_pop         = sum(pop),
              total_gdp_per_cap = sum(pop*gdpPercap)/total_pop) %>%
    head(5)

## # A tibble: 5 x 4
##    year num_countries total_pop total_gdp_per_cap
##   <int>         <int>     <int>             <dbl>
## 1  1952             5  15436728             3030.
## 2  1957             5  16314276             4187.
## 3  1962             5  17099107             5257.
## 4  1967             5  17878535             6656.
## 5  1972             5  18579786             8730.

Because we did group_by()  with year  then used summarize() , we get one
row per value of year !

Each value of year is its own group!
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Window Functions
Grouping can also be used with mutate()  or filter()  to give rank orders
within a group, lagged values, and cumulative sums. You can read more about
window functions in this vignette.

yugoslavia %>% 
  select(country, year, pop) %>%
  filter(year >= 2002) %>% 
  group_by(country) %>%
  mutate(lag_pop = lag(pop, order_by = year),
         pop_chg = pop - lag_pop) %>%
  head(4)

## # A tibble: 4 x 5
## # Groups:   country [2]
##   country                 year     pop lag_pop pop_chg
##   <fct>                  <int>   <int>   <int>   <int>
## 1 Bosnia and Herzegovina  2002 4165416      NA      NA
## 2 Bosnia and Herzegovina  2007 4552198 4165416  386782
## 3 Croatia                 2002 4481020      NA      NA
## 4 Croatia                 2007 4493312 4481020   12292
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https://cran.r-project.org/web/packages/dplyr/vignettes/window-functions.html


Joining (Merging) Data Frames
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When Do We Need to Join Tables?
Want to make columns using criteria too complicated for ifelse()  or
case_when()

We can work with small sets of variables then combine them back
together.

Combine data stored in separate data sets: e.g. UW registrar data with
police stop records.

Often large surveys are broken into different data sets for each level
(e.g. household, individual, neighborhood)
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Joining in Concept
We need to think about the following when we want to merge data frames A
and B :

Which rows are we keeping from each data frame?

Which columns are we keeping from each data frame?

Which variables determine whether rows match?
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Join Types: Rows and columns kept
There are many types of joins1...

A %>% left_join(B) : keep all rows from A , matched with B  wherever
possible (NA  when not), keep columns from both A  and B

A %>% right_join(B) : keep all rows from B , matched with A  wherever
possible (NA  when not), keep columns from both A  and B

A %>% inner_join(B) : keep only rows from A  and B  that match, keep
columns from both A  and B

A %>% full_join(B) : keep all rows from both A  and B , matched
wherever possible (NA  when not), keep columns from both A  and B

A %>% semi_join(B) : keep rows from A  that match rows in B , keep
columns from only A

A %>% anti_join(B) : keep rows from A  that don't match a row in B ,
keep columns from only A

[1] Usually left_join()  does the job.

40 / 50



Matching Criteria
We say rows should match because they have some columns containing the
same value. We list these in a by =  argument to the join.

Matching Behavior:

No by : Match using all variables in A  and B  that have identical names

by = c("var1", "var2", "var3") : Match on identical values of var1 ,
var2 , and var3  in both A  and B

by = c("Avar1" = "Bvar1", "Avar2" = "Bvar2") : Match identical
values of Avar1  variable in A  to Bvar1  variable in B , and Avar2  variable
in A  to Bvar2  variable in B

Note: If there are multiple matches, you'll get one row for each possible
combination (except with semi_join()  and anti_join()).

Need to get more complicated? Break it into multiple operations.
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nycflights13 Data
We'll use data in the nycflights13  package. Install and load it:

# install.packages("nycflights13") # Uncomment to run
library(nycflights13)

It includes five dataframes, some of which contain missing data (NA):

flights : flights leaving JFK, LGA, or EWR in 2013
airlines : airline abbreviations
airports : airport metadata
planes : airplane metadata
weather : hourly weather data for JFK, LGA, and EWR

Note these are separate data frames, each needing to be loaded separately:

data(flights)
data(airlines)
data(airports)
# and so on...
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https://cran.r-project.org/web/packages/nycflights13/nycflights13.pdf


Join Example #1
Who manufactures the planes that flew to Seattle?

flights %>% filter(dest == "SEA") %>% select(tailnum) %>%
    left_join(planes %>% select(tailnum, manufacturer),
              by = "tailnum") %>%
    count(manufacturer) %>% # Count observations by manufacturer
    arrange(desc(n)) # Arrange data descending by count

## # A tibble: 6 x 2
##   manufacturer           n
##   <chr>              <int>
## 1 BOEING              2659
## 2 AIRBUS               475
## 3 AIRBUS INDUSTRIE     394
## 4 <NA>                 391
## 5 BARKER JACK L          2
## 6 CIRRUS DESIGN CORP     2

Note you can perform operations on the data inside functions such as
left_join()  and the output will be used by the function.
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Join Example #2
Which airlines had the most flights to Seattle from NYC?

flights %>% filter(dest == "SEA") %>% 
    select(carrier) %>%
    left_join(airlines, by = "carrier") %>%
    group_by(name) %>% 
    tally() %>%
    arrange(desc(n))

## # A tibble: 5 x 2
##   name                       n
##   <chr>                  <int>
## 1 Delta Air Lines Inc.    1213
## 2 United Air Lines Inc.   1117
## 3 Alaska Airlines Inc.     714
## 4 JetBlue Airways          514
## 5 American Airlines Inc.   365

tally()  is a shortcut for summarize(n(.)) : It creates a variable n  equal to
the number of rows in each group.
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Join Example #3
Is there a relationship between departure delays and wind gusts?

library(ggplot2)
flights %>% 
    select(origin, year, month, day, hour, dep_delay) %>%
    inner_join(weather, 
           by = c("origin", "year", "month", "day", "hour")) %>%
    select(dep_delay, wind_gust) %>%
    # removing rows with missing values
    filter(!is.na(dep_delay) & !is.na(wind_gust)) %>% 
    ggplot(aes(x = wind_gust, y = dep_delay)) +
      geom_point() + 
      geom_smooth()

Because the data are the first argument for ggplot() , we can pipe them
straight into a plot.
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Wind Gusts and Delays

Check out those 1200 mph winds!1

[1] These observations appear to have been fixed in the current data.
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Redo After Removing Extreme

Outliers, Just Trend
flights %>% 
    select(origin, year, month, day, hour, dep_delay) %>%
    inner_join(weather, by = c("origin", "year", "month", "day", "hour")) %>%
    select(dep_delay, wind_gust) %>%
    filter(!is.na(dep_delay) & !is.na(wind_gust) & wind_gust < 250) %>%
    ggplot(aes(x = wind_gust, y = dep_delay)) +
      geom_smooth() + 
      theme_bw(base_size = 16) +
      xlab("Wind gusts in departure hour (mph)") +
      ylab("Average departure delay (minutes)")

I removed geom_point()  to focus on the mean trend produced by
geom_smooth() .
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Wind Gusts and Delays: Mean Trend
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Tinkering Suggestions
Some possible questions to investigate:

What are the names of the most common destination airports?
Which airlines fly from NYC to your home city?
Is there a relationship between departure delays and precipitation?
What is the distribution of departure times for flights leaving NYC over a
24 hour period?

Are especially late or early arrivals departures to some regions or for
some airlines?

Warning: flights  has 336776 rows, so if you do a sloppy join, you can end
up with many matches per observation and have the data explode in size.
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Homework 3
Pick something to look at in the nycflights13  data and write up a .Rmd file
showing your investigation. Upload both the .Rmd file and the .html file to
Canvas. You must use at least once: mutate() , summarize() , group_by() ,
and any join. Include at least one nicely formatted plot (ggplot2) and one table
(pander). In plots and tables, use "nice" variable names (try out spaces!) and
rounded values (<= 3 digits).

This time, include all your code in your output document (echo=TRUE), using
comments and line breaks separating commands so that it is clear to a peer
what you are doing (or trying to do!). You must write up your observations
briefly in words as well.

Note: If you want to see the nycflights13  dataframes in the environment,
you will need to load each one: airlines , airports , flights , planes , and
weather  (e.g. data(flights)).
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