
CSSS508, Week 2

Plotting with ggplot2
Chuck Lanfear

April 7, 2020

Updated: Apr 6, 2021

But First...

Some useful stuff

2 / 77

Comments
You may have noticed that sometimes I have written code that looks like this:

new.object <- 1:10 # Making vector of 1 to 10

is known as the commenting symbol in R!

Anything written on the same line after # will not be run by R.

This is useful for annotating your code to remind you (or others) what you are
doing in a section.1

[1] In R Markdown documents, comments only work in chunks. Outside of a chunk, #
creates headers like "comments" at the top of this slide.

3 / 77

Saving Files
You can save an R object on your computer as a file to open later:

save(new.object, file="new_object.RData")

You can open saved files in R as well:

load("new_object.RData")

But where are these files being saved and loaded from?

4 / 77

Working Directories
R saves files and looks for files to open in your current working directory1.
You can ask R what this is:

getwd()

[1] "C:/Users/cclan/OneDrive/GitHub/CSSS508/Lectures/Week2"

Similarly, we can set a working directory like so:

setwd("C:/Users/cclan/Documents")

Don't set a working directory in R Markdown documents! They automatically
set the directory they are in as the working directory.

[1] For a simple R function to open an Explorer / Finder window at your working
directory, see this StackOverflow response.

5 / 77

https://stackoverflow.com/a/12135823/10277284

Managing Files
When managing R projects, it is normally best to give each project (such as a
homework assignment) its own folder. I use the following system:

Every class or project has its own folder
Each assignment or task has a folder inside that, which is the working
directory for that item.
.Rmd and .R files are named clearly and completely

For example, this presentation is located and named this:
GitHub/CSSS508/Lectures/Week2/CSSS508_Week2_ggplot2.Rmd

You can use whatever system you want, but be consistent so your projects are
organized! You don't want to lose work by losing or overwriting files!

For large projects containing many files, I recommend using RStudio's built in
project management system found in the top right of the RStudio window.

For journal articles I recommend Ben Marwick's rrtools and huskydown for
UW dissertations and theses. I made an rrtools demo presentation here.

6 / 77

https://github.com/benmarwick/rrtools
https://github.com/benmarwick/huskydown
https://clanfear.github.io/birthtiming/inst/presentation/presentation.html#/

File Types
We mainly work with three types of file in this class:

.Rmd : These are markdown syntax files, where you write code to make
documents.

.R : These are R syntax files, where you write code to process and analyze
data without making an output document.1

.html or .pdf : These are the output documents created when you knit a
markdown document.

Make sure you understand the difference between the uses of these file types!
Please ask for clarification if needed!

[1] While beyond the scope of this class, you can use the source() function to run a .R
script file inside a .Rmd or .R file. Using this you can break a large project up into
multiple files but still run it all at once!

7 / 77

Data and Subsetting

8 / 77

Gapminder Data
We'll be working with data from Hans Rosling's Gapminder project. An
excerpt of these data can be accessed through an R package called
gapminder , cleaned and assembled by Jenny Bryan at UBC.

In the console: install.packages("gapminder")

Load the package and data:

library(gapminder)

9 / 77

http://www.gapminder.org/

Check Out Gapminder
The data frame we will work with is called gapminder , available once you
have loaded the package. Let's see its structure:

str(gapminder)

tibble [1,704 x 6] (S3: tbl_df/tbl/data.frame)
$ country : Factor w/ 142 levels "Afghanistan",..: 1 1 1 1 1 1 1 1 1 1 ...
$ continent: Factor w/ 5 levels "Africa","Americas",..: 3 3 3 3 3 3 3 3 3 3 ...
$ year : int [1:1704] 1952 1957 1962 1967 1972 1977 1982 1987 1992 1997 ...
$ lifeExp : num [1:1704] 28.8 30.3 32 34 36.1 ...
$ pop : int [1:1704] 8425333 9240934 10267083 11537966 13079460 14880372 12881816 13867957 163
$ gdpPercap: num [1:1704] 779 821 853 836 740 ...

10 / 77

What's Interesting Here?
Factor variables country and continent

Factors are categorical data with an underlying numeric
representation
We'll spend a lot of time on factors later!

Many observations: rows

A nested/hierarchical structure: year in country in continent

These are panel data!

n = 1704

11 / 77

Subsetting Data

12 / 77

Installing Tidyverse
We'll want to be able to slice up this data frame into subsets (e.g. just the rows
for Afghanistan, just the rows for 1997).

We will use a package called dplyr to do this neatly.

dplyr is part of the tidyverse family of R packages that are the focus of this
course.

If you have not already installed the tidyverse, type, in the console:
install.packages("tidyverse")

This will install a large number of R packages we will use throughout the
term, including dplyr .

dplyr is a very useful and powerful package that we will talk more about
soon, but today we're just going to use it for "filtering" data.

13 / 77

http://tidyverse.org/

Loading dplyr
library(dplyr)

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

14 / 77

Wait, was that an error?
When you load packages in R that have functions sharing the same name as
functions you already have, the more recently loaded functions overwrite the
previous ones ("masks them").

This message is just letting you know that. To avoid showing this in your R
Markdown file, add message=FALSE or include=FALSE to your chunk
options when loading packages.

Sometimes you may get a warning message when loading packages---usually
because you aren't running the latest version of R:

Warning message:
package `gapminder' was built under R version 3.5.3

Chunk options message=FALSE or include=FALSE will hide this. Update R to
deal with it completely!

15 / 77

magrittr and Pipes
dplyr allows us to use magrittr1 operators (%>%) to "pipe" data between
functions. So instead of nesting functions like this:

log(mean(gapminder$pop))

[1] 17.20333

We can pipe them like this:

gapminder$pop %>% mean() %>% log()

[1] 17.20333

Read this as, "send gapminder$pop to mean() , then send the output of that to
log() ." In essence, pipes read "left to right" while nested functions read
"inside to out." This may be confusing... we'll cover it more later!

[1] Ceci n'est pas un pipe

16 / 77

https://en.wikipedia.org/wiki/The_Treachery_of_Images

filter Data Frames
gapminder %>% filter(country == "Algeria")

A tibble: 12 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 Algeria Africa 1952 43.1 9279525 2449.
2 Algeria Africa 1957 45.7 10270856 3014.
3 Algeria Africa 1962 48.3 11000948 2551.
4 Algeria Africa 1967 51.4 12760499 3247.
5 Algeria Africa 1972 54.5 14760787 4183.
6 Algeria Africa 1977 58.0 17152804 4910.
7 Algeria Africa 1982 61.4 20033753 5745.
8 Algeria Africa 1987 65.8 23254956 5681.
9 Algeria Africa 1992 67.7 26298373 5023.
10 Algeria Africa 1997 69.2 29072015 4797.
11 Algeria Africa 2002 71.0 31287142 5288.
12 Algeria Africa 2007 72.3 33333216 6223.

What is this doing?

17 / 77

How Expressions Work
What does country == "Algeria" actually do?

head(gapminder$country == "Algeria", 50) # display first 50 elements

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[12] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[23] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[34] TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[45] FALSE FALSE FALSE FALSE FALSE FALSE

It returns a vector of TRUE or FALSE values.

When used with the subset operator ([]), elements for which a TRUE is given
are returned while those corresponding to FALSE are dropped.

18 / 77

Logical Operators
We used == for testing "equals": country == "Algeria" .

There are many other logical operators:

!= : not equal to
> , >= , < , <= : less than, less than or equal to, etc.
%in% : used with checking equal to one of several values

Or we can combine multiple logical conditions:

& : both conditions need to hold (AND)
| : at least one condition needs to hold (OR)
! : inverts a logical condition (TRUE becomes FALSE , FALSE becomes
TRUE)

We'll use these a lot so don't worry too much right now!

19 / 77

http://www.statmethods.net/management/operators.html

Multiple Conditions Example
gapminder %>%
 filter(country == "Oman" & year > 1980)

A tibble: 6 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 Oman Asia 1982 62.7 1301048 12955.
2 Oman Asia 1987 67.7 1593882 18115.
3 Oman Asia 1992 71.2 1915208 18617.
4 Oman Asia 1997 72.5 2283635 19702.
5 Oman Asia 2002 74.2 2713462 19775.
6 Oman Asia 2007 75.6 3204897 22316.

20 / 77

And: &

gapminder %>%
 filter(country == "Oman" &
 year > 1980)

Country

Oman
Year

> 1980

Give me rows where the country is
Oman and the year is after 1980.

Or: |

gapminder %>%
 filter(country == "Oman" |
 year > 1980)

Country

Oman
Year

> 1980

Give me rows where the country is
Oman or the year is after 1980... or
both.

Multiple Conditions

21 / 77

Saving a Subset
If we think a particular subset will be used repeatedly, we can save it and give
it a name like any other object:

China <- gapminder %>% filter(country == "China")
head(China, 4)

A tibble: 4 x 6
country continent year lifeExp pop gdpPercap
<fct> <fct> <int> <dbl> <int> <dbl>
1 China Asia 1952 44 556263527 400.
2 China Asia 1957 50.5 637408000 576.
3 China Asia 1962 44.5 665770000 488.
4 China Asia 1967 58.4 754550000 613.

22 / 77

ggplot2

23 / 77

plot(lifeExp ~ year,
 data = China,
 xlab = "Year",
 ylab = "Life expectancy",
 main = "Life expectancy in China",
 col = "red",
 cex.lab = 1.5,
 cex.main= 1.5,
 pch = 16)

Base R Plots from Last Week

24 / 77

ggplot2
An alternative way of plotting many prefer (myself included)1 uses the
ggplot2 package in R, which is part of the tidyverse .

library(ggplot2)

The core idea underlying this package is the layered grammar of graphics:
we can break up elements of a plot into pieces and combine them.

[1] Though this is not without debate

25 / 77

https://doi.org/10.1198/jcgs.2009.07098
http://simplystatistics.org/2016/02/11/why-i-dont-use-ggplot2/

ggplot(data = China,
 aes(x = year, y = lifeExp)) +
 geom_point()

Chinese Life Expectancy in ggplot

26 / 77

Structure of a ggplot
ggplot2 graphics objects consist of two primary components:

1. Layers, the components of a graph.

We add layers to a ggplot2 object using + .
This includes lines, shapes, and text.

2. Aesthetics, which determine how the layers appear.

We set aesthetics using arguments (e.g. color="red") inside layer
functions.
This includes locations, colors, and sizes.
Aesthetics also determine how data map to appearances.

27 / 77

Layers
Layers are the components of the graph, such as:

ggplot() : initializes ggplot2 object, specifies input data
geom_point() : layer of scatterplot points
geom_line() : layer of lines
ggtitle() , xlab() , ylab() : layers of labels
facet_wrap() : layer creating separate panels stratified by some factor
wrapping around
facet_grid() : same idea, but can split by two variables along rows and
columns (e.g. facet_grid(gender ~ age_group))
theme_bw() : replace default gray background with black-and-white

Layers are separated by a + sign. For clarity, I usually put each layer on a new
line, unless it takes few or no arguments (e.g. xlab() , ylab() , theme_bw()).

28 / 77

Aesthetics
Aesthetics control the appearance of the layers:

x , y : and coordinate values to use
color : set color of elements based on some data value
group : describe which points are conceptually grouped together for the
plot (often used with lines)
size : set size of points/lines based on some data value
alpha : set transparency based on some data value

x y

29 / 77

Aesthetics: Setting vs. mapping
Layers take arguments to control their appearance, such as point/line colors
or transparency (alpha between 0 and 1).

Arguments like color , size , linetype , shape , fill , and alpha can be
used directly on the layers (setting aesthetics), e.g. geom_point(color
= "red") . See the ggplot2 documentation for options. These don't
depend on the data.

Arguments inside aes() (mapping aesthetics) will depend on the data,
e.g. geom_point(aes(color = continent)) .

aes() in the ggplot() layer gives overall aesthetics to use in other
layers, but can be changed on individual layers (including switching x or
y to different variables)

This may seem pedantic, but precise language makes searching for help
easier.

Now let's see all this jargon in action.

30 / 77

https://ggplot2.tidyverse.org/reference/index.html

ggplot(data = China,
 aes(x = year, y = lifeExp))

Axis Labels, Points, No Background

1: Base Plot

Initialize the plot with ggplot() and x and y aesthetics mapped to variables.

31 / 77

ggplot(data = China,
 aes(x = year, y = lifeExp)) +
 geom_point()

Axis Labels, Points, No Background

2: Scatterplot

Add a scatterplot layer.

32 / 77

ggplot(data = China,
 aes(x = year, y = lifeExp)) +
 geom_point(color = "red", size = 3)

Axis Labels, Points, No Background

3: Point Color and Size

Set aesthetics to make the points large and red.

33 / 77

ggplot(data = China,
 aes(x = year, y = lifeExp)) +
 geom_point(color = "red", size = 3) +
 xlab("Year")

Axis Labels, Points, No Background

4: X-Axis Label

Add a layer to capitalize the x-axis label.

34 / 77

ggplot(data = China,
 aes(x = year, y = lifeExp)) +
 geom_point(color = "red", size = 3) +
 xlab("Year") +
 ylab("Life expectancy")

Axis Labels, Points, No Background

5: Y-Axis Label

Add a layer to clean up the y-axis label.

35 / 77

ggplot(data = China,
 aes(x = year, y = lifeExp)) +
 geom_point(color = "red", size = 3) +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy in China")

Axis Labels, Points, No Background

6: Title

Add a title layer.

36 / 77

ggplot(data = China,
 aes(x = year, y = lifeExp)) +
 geom_point(color = "red", size = 3) +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy in China") +
 theme_bw()

Axis Labels, Points, No Background

7: Theme

Pick a nicer theme with a new layer.

37 / 77

ggplot(data = China,
 aes(x = year, y = lifeExp)) +
 geom_point(color = "red", size = 3) +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy in China") +
 theme_bw(base_size=18)

Axis Labels, Points, No Background

8: Text Size

Increase the base text size.

38 / 77

Plotting All Countries
We have a plot we like for China...

... but what if we want all the countries?

39 / 77

ggplot(data = gapminder,
 aes(x = year, y = lifeExp)) +
 geom_point(color = "red", size = 3) +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy over time") +
 theme_bw(base_size=18)

Plotting All Countries
1: A Mess!

We can't tell countries apart! Maybe we could follow lines?

40 / 77

ggplot(data = gapminder,
 aes(x = year, y = lifeExp)) +
 geom_line(color = "red", size = 3) +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy over time") +
 theme_bw(base_size=18)

Plotting All Countries
2: Lines

ggplot2 doesn't know how to connect the lines!

41 / 77

ggplot(data = gapminder,
 aes(x = year, y = lifeExp,
 group = country)) +
 geom_line(color = "red", size = 3) +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy over time") +
 theme_bw(base_size=18)

Plotting All Countries
3: Grouping

That looks more reasonable... but the lines are too thick!

42 / 77

ggplot(data = gapminder,
 aes(x = year, y = lifeExp,
 group = country)) +
 geom_line(color = "red") +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy over time") +
 theme_bw(base_size=18)

Plotting All Countries
4: Size

Much better... but maybe we can do highlight regional differences?

43 / 77

ggplot(data = gapminder,
 aes(x = year, y = lifeExp,
 group = country,
 color = continent)) +
 geom_line() +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy over time") +
 theme_bw(base_size=18)

Plotting All Countries
5: Color

Patterns are obvious... but why not separate continents completely?

44 / 77

ggplot(data = gapminder,
 aes(x = year, y = lifeExp,
 group = country,
 color = continent)) +
 geom_line() +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy over time") +
 theme_bw(base_size=18) +
 facet_wrap(~ continent)

Plotting All Countries
6: Facets

Now the text is too big!

45 / 77

ggplot(data = gapminder,
 aes(x = year, y = lifeExp,
 group = country,
 color = continent)) +
 geom_line() +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy over time") +
 theme_bw() +
 facet_wrap(~ continent)

Plotting All Countries
7: Text Size

Better, but could bring that legend in.

46 / 77

ggplot(data = gapminder,
 aes(x = year, y = lifeExp,
 group = country,
 color = continent)) +
 geom_line() +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy over time") +
 theme_bw() +
 facet_wrap(~ continent) +
 theme(legend.position = c(0.8, 0.25))

Plotting All Countries
8: Legend Position

Better... but do we even need it?

47 / 77

ggplot(data = gapminder,
 aes(x = year, y = lifeExp,
 group = country,
 color = continent)) +
 geom_line() +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy over time") +
 theme_bw() +
 facet_wrap(~ continent) +
 theme(legend.position = "none")

Plotting All Countries
9: No Legend

Looking good!

48 / 77

Storing Plots
We can assign a ggplot object to a name:

lifeExp_by_year <-
 ggplot(data = gapminder,
 aes(x = year, y = lifeExp,
 group = country,
 color = continent)) +
 geom_line() +
 xlab("Year") +
 ylab("Life expectancy") +
 ggtitle("Life expectancy over time") +
 theme_bw() +
 facet_wrap(~ continent) +
 theme(legend.position = "none")

The graph won't be displayed when you do this. You can show the graph using
a single line of code with just the object name, or take the object and add more
layers.

49 / 77

Showing a Stored Graph
lifeExp_by_year

50 / 77

Adding a Layer

lifeExp_by_year +
 theme(legend.position = "bottom")

51 / 77

Changing the Axes
We can modify the axes in a variety of ways, such as:

Change the or range using xlim() or ylim() layers

Change to a logarithmic or square-root scale on either axis:
scale_x_log10() , scale_y_sqrt()

Change where the major/minor breaks are:
scale_x_continuous(breaks =, minor_breaks =)

x y

52 / 77

Axis Changes
ggplot(data = China, aes(x = year, y = gdpPercap)) +
 geom_line() +
 scale_y_log10(breaks = c(1000, 2000, 3000, 4000, 5000),
 labels = scales::dollar) +
 xlim(1940, 2010) + ggtitle("Chinese GDP per capita")

53 / 77

Fonts Too Small?
ggplot(data = China, aes(x = year, y = lifeExp)) +
 geom_line() +
 ggtitle("Chinese life expectancy") +
 theme_gray(base_size = 20)

54 / 77

Text and Tick Adjustments
Text size, labels, tick marks, etc. can be messed with more precisely using
arguments to the theme() layer.

Examples:

plot.title = element_text(size = rel(2), hjust = 0) makes
the title twice as big as usual and left-aligns it
axis.text.x = element_text(angle = 45) rotates axis labels
axis.text = element_text(colour = "blue") makes the and
axis labels blue
axis.ticks.length = unit(.5, "cm") makes the axis ticks longer

Note: theme() is a different layer than theme_gray() or theme_bw() ,
which you might also be using in a previous layer. See the ggplot2
documentation for details.

I recommend using theme() after theme_bw() or other global themes.

x

x y

55 / 77

http://docs.ggplot2.org/current/theme.html

Scales for Color, Shape, etc.
Scales are layers that control how the mapped aesthetics appear. You can
modify these with a scale_[aesthetic]_[option]() layer where
[aesthetic] is color , shape , linetype , alpha , size , fill , etc. and
[option] is something like manual , continuous or discrete (depending
on nature of the variable).

Examples:

scale_linetype_manual() : manually specify the linetype for each
different value
scale_alpha_continuous() : varies transparency over a continuous
range
scale_color_brewer(palette = "Spectral") : uses a palette from
http://colorbrewer2.org (great site for picking nice plot colors!)

When confused... Google or StackOverflow it!

56 / 77

http://colorbrewer2.org/

Legend Name and Manual Colors
lifeExp_by_year +
 theme(legend.position = c(0.8, 0.2)) +
 scale_color_manual(
 name = "Which continent are\nwe looking at?", # \n adds a line break
 values = c("Africa" = "seagreen", "Americas" = "turquoise1",
 "Asia" = "royalblue", "Europe" = "violetred1", "Oceania" = "yellow"))

57 / 77

Fussy Manual Legend Example Code
ggplot(data = gapminder, aes(x = year, y = lifeExp, group = country)) +
 geom_line(alpha = 0.5, aes(color = "Country", size = "Country")) +
 geom_line(stat = "smooth", method = "loess",
 aes(group = continent, color = "Continent", size = "Continent"), alpha = 0.5) +
 facet_wrap(~ continent, nrow = 2) +
 scale_color_manual(name = "Life Exp. for:",
 values = c("Country" = "black", "Continent" = "blue")) +
 scale_size_manual(name = "Life Exp. for:",
 values = c("Country" = 0.25, "Continent" = 3)) +
 theme_minimal(base_size = 14) +
 ylab("Years") + xlab("") +
 ggtitle("Life Expectancy, 1952-2007", subtitle = "By continent and country") +
 theme(legend.position=c(0.75, 0.2), axis.text.x = element_text(angle = 45))

Wow, there's a lot going on here!

Two different geom_line() calls
One of them draws a loess curve

facet_wrap() to make a plot for each level of continent
Manual scales for size and color
Custom labels, titles, and rotated x axis text

58 / 77

https://en.wikipedia.org/wiki/Local_regression

1. Base Plot
ggplot(data = gapminder, aes(x = year, y = lifeExp, group = country))
 #
 #
 #
 #
 #
 #
 #
 #
 #

59 / 77

2. Lines
ggplot(data = gapminder, aes(x = year, y = lifeExp, group = country)) +
 geom_line()
 #
 #
 #
 #
 #
 #
 #
 #

60 / 77

3. Continent Average
ggplot(data = gapminder, aes(x = year, y = lifeExp, group = country)) +
 geom_line() +
 geom_line(stat = "smooth", method = "loess",
 aes(group = continent))
 #
 #
 #
 #
 #
 #

61 / 77

4. Facets
ggplot(data = gapminder, aes(x = year, y = lifeExp, group = country)) +
 geom_line() +
 geom_line(stat = "smooth", method = "loess",
 aes(group = continent)) +
 facet_wrap(~ continent, nrow = 2)
 #
 #
 #
 #
 #

62 / 77

5. Color Scale
ggplot(data = gapminder, aes(x = year, y = lifeExp, group = country)) +
 geom_line(aes(color = "Country")) +
 geom_line(stat = "smooth", method = "loess",
 aes(group = continent, color = "Continent")) +
 facet_wrap(~ continent, nrow = 2) +
 scale_color_manual(name = "Life Exp. for:", values = c("Country" = "black", "Continent" = "blue"))
 #
 #
 #
 #

63 / 77

6. Size Scale
ggplot(data = gapminder, aes(x = year, y = lifeExp, group = country)) +
 geom_line(aes(color = "Country", size = "Country")) +
 geom_line(stat = "smooth", method = "loess",
 aes(group = continent, color = "Continent", size = "Continent")) +
 facet_wrap(~ continent, nrow = 2) +
 scale_color_manual(name = "Life Exp. for:", values = c("Country" = "black", "Continent" = "blue")) +
 scale_size_manual(name = "Life Exp. for:", values = c("Country" = 0.25, "Continent" = 3))
 #
 #
 #

64 / 77

7. Alpha (Transparency)
ggplot(data = gapminder, aes(x = year, y = lifeExp, group = country)) +
 geom_line(alpha = 0.5, aes(color = "Country", size = "Country")) +
 geom_line(stat = "smooth", method = "loess",
 aes(group = continent, color = "Continent", size = "Continent"), alpha = 0.5) +
 facet_wrap(~ continent, nrow = 2) +
 scale_color_manual(name = "Life Exp. for:", values = c("Country" = "black", "Continent" = "blue")) +
 scale_size_manual(name = "Life Exp. for:", values = c("Country" = 0.25, "Continent" = 3))
 #
 #
 #

65 / 77

8. Theme and Labels
ggplot(data = gapminder, aes(x = year, y = lifeExp, group = country)) +
 geom_line(alpha = 0.5, aes(color = "Country", size = "Country")) +
 geom_line(stat = "smooth", method = "loess",
 aes(group = continent, color = "Continent", size = "Continent"), alpha = 0.5) +
 facet_wrap(~ continent, nrow = 2) +
 scale_color_manual(name = "Life Exp. for:", values = c("Country" = "black", "Continent" = "blue")) +
 scale_size_manual(name = "Life Exp. for:", values = c("Country" = 0.25, "Continent" = 3)) +
 theme_minimal(base_size = 14) + ylab("Years") + xlab("")
 #
 #

66 / 77

9. Title and Subtitle
ggplot(data = gapminder, aes(x = year, y = lifeExp, group = country)) +
 geom_line(alpha = 0.5, aes(color = "Country", size = "Country")) +
 geom_line(stat = "smooth", method = "loess",
 aes(group = continent, color = "Continent", size = "Continent"), alpha = 0.5) +
 facet_wrap(~ continent, nrow = 2) +
 scale_color_manual(name = "Life Exp. for:", values = c("Country" = "black", "Continent" = "blue")) +
 scale_size_manual(name = "Life Exp. for:", values = c("Country" = 0.25, "Continent" = 3)) +
 theme_minimal(base_size = 14) + ylab("Years") + xlab("") +
 ggtitle("Life Expectancy, 1952-2007", subtitle = "By continent and country")
 #

67 / 77

10. Angled Tick Values
ggplot(data = gapminder, aes(x = year, y = lifeExp, group = country)) +
 geom_line(alpha = 0.5, aes(color = "Country", size = "Country")) +
 geom_line(stat = "smooth", method = "loess",
 aes(group = continent, color = "Continent", size = "Continent"), alpha = 0.5) +
 facet_wrap(~ continent, nrow = 2) +
 scale_color_manual(name = "Life Exp. for:", values = c("Country" = "black", "Continent" = "blue")) +
 scale_size_manual(name = "Life Exp. for:", values = c("Country" = 0.25, "Continent" = 3)) +
 theme_minimal(base_size = 14) + ylab("Years") + xlab("") +
 ggtitle("Life Expectancy, 1952-2007", subtitle = "By continent and country") +
 theme(axis.text.x = element_text(angle = 45))

Note: Fewer values might be better than angled labels!

68 / 77

11. Legend Position
ggplot(data = gapminder, aes(x = year, y = lifeExp, group = country)) +
 geom_line(alpha = 0.5, aes(color = "Country", size = "Country")) +
 geom_line(stat = "smooth", method = "loess",
 aes(group = continent, color = "Continent", size = "Continent"), alpha = 0.5) +
 facet_wrap(~ continent, nrow = 2) +
 scale_color_manual(name = "Life Exp. for:", values = c("Country" = "black", "Continent" = "blue")) +
 scale_size_manual(name = "Life Exp. for:", values = c("Country" = 0.25, "Continent" = 3)) +
 theme_minimal(base_size = 14) + ylab("Years") + xlab("") +
 ggtitle("Life Expectancy, 1952-2007", subtitle = "By continent and country") +
 theme(legend.position=c(0.82, 0.15), axis.text.x = element_text(angle = 45))

69 / 77

Fussy Manual Legend

Observation: One could use filter() to identify the countries with dips in
life expectancy and investigate.

Know Your History: What happened in Africa in the early 1990s and Asia in
the mid-1970s that might reduce life expectancy suddenly for one country?

70 / 77

More on Customizing Legends
You can move the legends around, flip their orientation, remove them
altogether, etc. The Cookbook for R website is a good resource for questions
such as changing legend labels.

71 / 77

http://www.cookbook-r.com/Graphs/Legends_%28ggplot2%29

Saving ggplot Plots
When you knit an R Markdown file, any plots you make are automatically
saved in the "figure" folder in .png format. If you want to save another copy
(perhaps of a different file type for use in a manuscript), use ggsave() :

ggsave("I_saved_a_file.pdf", plot = lifeExp_by_year,
 height = 3, width = 5, units = "in")

If you didn't manually set font sizes, these will usually come out at a
reasonable size given the dimensions of your output file.

Bad/non-reproducible way1: choose Export on the plot preview or take a
screenshot / snip.

[1] I still do this for quick emails of simple plots. Bad me!

72 / 77

Bonus Plots
ggplot2 is well suited to making complex, publication ready plots.

This is the complete syntax for one plot from an article of mine.1

ggplot(estimated_pes, aes(x = Target, y = PE, group = Reporter)) +
 facet_grid(`Crime Type` ~ Neighborhood) +
 geom_errorbar(aes(ymin = LB, ymax = UB),
 position = position_dodge(width = .4), size = 0.75, width = 0.15) +
 geom_point(shape = 21, position = position_dodge(width = .4),
 size = 2, aes(fill = Reporter)) +
 scale_fill_manual("Reporter",
 values = c("Any White" = "white", "All Black" = "black")) +
 ggtitle("Figure 3. Probability of Arrest",
 subtitle = "by Reporter and Target Race, Neighborhood and Crime Type") +
 xlab("Race of Target") + ylab("Estimated Probability") +
 theme_bw() + theme(legend.position = c(0.86, 0.15),
 legend.background = element_rect(color = 1))

[1] Lanfear, Charles C., Lindsey R. Beach, Timothy A. Thomas. 2018. "Formal Social
Control in Changing Neighborhoods: Racial Implications of Neighborhood Context on
Reactive Policing." City & Community 17(4):1075-1099

73 / 77

https://onlinelibrary.wiley.com/doi/10.1111/cico.12346

You can also gussy things up a bit...

The process for this plot is documented in my Advanced Counterfactuals slides

74 / 77

https://clanfear.github.io/CSSS508/Lectures/Week10/CSSS508_Advanced_Counterfactuals.html#1

16.2%*

Total
Effect

Direct
Effect

Percent
Mediated

18.6%* 25.5%* 19%* 59.3%

Homicide Gun Assault Robbery Any Violent Any Property

0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0

Mixed
Land Use

Bars and
Liquor Stores

Vacant
Lots

Abandoned
Buildings

Collective
Efficacy

Rate Ratio (2 SD Change) - 95% CI

Neighborhood collective efficacy and block-level built environment

Estimated Rate Ratios by Crime Type

The code for this one is a bit trickier.

75 / 77

Targeted at Social Scientists
without technical backgrounds

Teaches good visualization
principles

Uses R, ggplot2 , and
tidyverse

Free online version!

Affordable in print

Book Recommendation

76 / 77

https://socviz.co/

Homework
Pick some relationship to look at in the Gapminder data and write up a .Rmd
file investigating that question graphically. You might work with a subset of
the data (e.g. just Africa). Upload both the .Rmd file and the .html file to
Canvas.

Include 4 to 8 plots.
All titles, axes, and legends should be labelled clearly (no raw variable
names).
You must have at least one graph with facet_wrap() or facet_grid() .
You must include at least one manually specified legend.
You can use other geoms like histograms, bar charts, add vertical or
horizontal lines, etc. You may find this data visualization cheat sheet
helpful.

Your document should be pleasant for a peer to look at, with some
organization. You must write up your observations in words as well as
showing the graphs. Use chunk options like echo=FALSE to limit the
code/output you show in the .html .

77 / 77

https://www.rstudio.com/wp-content/uploads/2016/11/ggplot2-cheatsheet-2.1.pdf

