
CSSS508, Week 1

RStudio and RMarkdown

Chuck Lanfear

Mar 31, 2020

Updated: Mar 31, 2021

Course Goals
Develop intermediate data management and visualization skills in R

Learn basic programming

Introduce reproducible research practices

Prepare you for statistics and CSSS courses

2 / 54

Who is this guy?
Chuck Lanfear

Instructor (not professor)

7th (and last) Year Sociology PhD student

Research:

Quantitative Sociology
Computational Social Science
Experimental Criminology

Translation:

I write code every day
I am a turbo-nerd
I think programming is incredibly important

3 / 54

Who is that guy?
Breon Haskett

Rhymes with Neon

4th Year Sociology PhD Student

Research

Labor, Collective Action, Pay Setting Institutions
Econometrics, Counterfactual Reasoning, Computational Data
Collection
Reproducible Research

About Me

Also, I write code every day
A nerd, but only between the hours of 9 - 6
Social Science programming is magical

4 / 54

Logistics
Location:

Lecture: Zoom (848-704-242) on Wednesdays, 3:30-5:20
Recommended Lab: Zoom (848-704-242) on Mondays, 3:30-5:20
Office Hours:

Breon: Thursdays, 11 - 12
Chuck: By appointment

Materials: http://clanfear.github.io/CSSS508

Grading:

Final grade: C/NC, 60% to get Credit
Homework most weeks (75% of grade), combination of reading and
programming
Peer Grading of homeworks (25% of grade)
Both handed in via Canvas.

5 / 54

https://washington.zoom.us/j/848704242
https://washington.zoom.us/j/848704242
http://clanfear.github.io/CSSS508

Ugh, peer grading?
Yes, because:

You will write your reports better knowing others will see them
You learn alternate approaches to the same problem

Format:

Randomly assigned peers, due before the following Wednesday
Follow the grading rubric
Leave constructive comments--more than just a "good job!"

On assignments 1-3 I expect a few sentences at least.
Assignments 4+ may follow labs and need less feedback if perfect.

Email us if you want more feedback

6 / 54

https://clanfear.github.io/CSSS508/docs/peer_review.html

Materials
All course materials are on the course website. This includes:

These slides and the code used to generate them.
An R script for the slides to follow along in class.
PDFs of slides if you like those.
Homework templates (HW 4+).
Video recordings of the lectures and labs.
Useful links to other resources.

If you find something on the website doesn't work, please Slack or email me.

7 / 54

Lab
Lab is optional but strongly recommended. They will be recorded this term.

Labs 1-3

I will provide general technical support and answer any R related questions
you have, whether for the homework or not.

Labs 4+

In the latter two-thirds of the course, we will walk through homeworks
together. This provides students guidance through the more complex
homeworks.

This gives students the option of (1) working independently on homeworks for
maximum learning, (2) reserving homeworks for lab if they are too
challenging or time consuming, or (3) a bit of both.

8 / 54

Using the Mailing List
Don't ask like this:

tried lm(y~x) but it iddn't work wat do

Instead, ask like this:

y <- seq(1:10) + rnorm(10)
x <- seq(0:10)
model <- lm(y ~ x)

Running the block above gives me the following error, anyone
know why?

Error in model.frame.default(formula = y ~ x,
drop.unused.levels = TRUE) : variable lengths differ
(found for 'x')

Note: If you're not enrolled but want to be on the mailing list, email me!

9 / 54

Slack Channel
This course uses a Slack Channel for additional communication.

You will receive a link to join via the email list.

Use it like the mailing list to ask questions, particularly for short questions.

Use the mailing list for long questions or those requiring you to attach a file.

I encourage you to answer each others' questions!

Note: If you're not enrolled but want to be Slack, email me!

10 / 54

https://uwcsss508.slack.com/

A Note on Slide Formatting
Bold usually indicates an important vocabulary term. Remember these!

Italics indicate emphasis but also are used to point out things you must click
with a mouse, for example: "Please click File > Print"

Code represents R code you type into the editor or console or keystrokes used
to perform actions, for example: "Press Ctrl-P to open the print dialogue."

Code chunks that span the page represent actual R code embedded in the slides.

Sometimes important stuff is highlighted!
7 * 49

[1] 343

The lines preceded by ## represent the output, or result, of running the code
in the code chunk. We'll talk about this more later!

11 / 54

Lecture Plan
1. RStudio and R Markdown
2. Visualizing Data
3. Manipulating and Summarizing Data
4. Understanding R Data Structures
5. Importing, Exporting, Cleaning Data
6. Using Loops
7. Writing Functions
8. Working with Text Data
9. Working with Geographical Data

10. Reproducibility and Model Results

12 / 54

R and RStudio

13 / 54

Why R?
R is a programming language built for statistical computing.

If one already knows Stata or similar software, why use R?

R is free, so you don't need a terminal server.

R has a very large community.

R can handle virtually any data format.

R makes replication easy.

R is a language so it can do everything.

R skills transfer to other languages like Python and Julia.

14 / 54

R Studio
R Studio is a "front-end" or integrated development environment (IDE) for R
that can make your life easier.

We'll show RStudio can...

Organize your code, output, and plots

Auto-complete code and highlight syntax

Help view data and objects

Enable easy integration of R code into documents with R Markdown

It can also...

Manage git repositories

Run interactive tutorials

Handle other languages like C++, Python, SQL, HTML, and shell scripting

15 / 54

Selling you on R Markdown
The ability to create R Markdown files is a powerful advantage of R:

Document analyses by combining text, code, and output

No copying and pasting into Word
Easy for collaborators to understand
Show as little or as much code as you want

Produce many different document types as output

PDF documents
HTML webpages and reports
Word and PowerPoint documents
Presentations (like these slides)

Works with LaTeX and HTML for math and more formatting control

We'll get back to this shortly!

16 / 54

Getting Started
Open up RStudio now and choose File > New File > R Script.

Then, let's get oriented with the interface:

Top Left: Code editor pane, data viewer (browse with tabs)

Bottom Left: Console for running code (> prompt)

Top Right: List of objects in environment, code history tab.

Bottom Right: Tabs for browsing files, viewing plots, managing packages,
and viewing help files.

You can change the layout in Preferences > Pane Layout

17 / 54

Editing and Running Code
There are several ways to run R code in RStudio:

Highlight lines in the editor window and click Run at the top or hit
Ctrl+Enter or ⌘+Enter to run them all.

With your caret1 on a line you want to run, hit Ctrl+Enter or
⌘+Enter . Note your caret moves to the next line, so you can run code
sequentially with repeated presses.

Type individual lines in the console and press Enter .

In R Markdown documents, click within a code chunk and click the green
arrow to run the chunk. The button beside that runs all prior chunks.

The console will show the lines you ran followed by any printed output.

This thing is the caret: |

18 / 54

Incomplete Code
If you mess up (e.g. leave off a parenthesis), R might show a + sign prompting
you to finish the command:

> (11-2
+

Finish the command or hit Esc to get out of this.

19 / 54

R as a Calculator
In the console, type 123 + 456 + 789 and hit Enter .

123 + 456 + 789

[1] 1368

The [1] in the output indicates the numeric index of the first element on that
line.

Now in your blank R document in the editor, try typing the line sqrt(400)
and either clicking Run or hitting Ctrl+Enter or ⌘+Enter .

sqrt(400)

[1] 20

20 / 54

Functions and Help
sqrt() is an example of a function in R.

If we didn't have a good guess as to what sqrt() will do, we can type ?sqrt
in the console and look at the Help panel on the right.

?sqrt

Arguments are the inputs to a function. In this case, the only argument to
sqrt() is x which can be a number or a vector of numbers.

Help files provide documentation on how to use functions and what functions
produce.

21 / 54

Creating Objects
R stores everything as an object, including data, functions, models, and
output.

Creating an object can be done using the assignment operator: <-

new.object <- 144

Operators like <- are functions that look like symbols but typically sit
between their arguments (e.g. numbers or objects) instead of having them
inside () like in sqrt(x)1.

We do math with operators, e.g., x + y . + is the addition operator!

[1] We can actually call operators like other functions by stuffing them between
backticks: `+`(x,y)

22 / 54

Calling Objects
You can display or "call" an object simply by using its name.

new.object

[1] 144

Object names can contain _ and . in them but cannot begin with numbers.
Try to be consistent in naming objects. RStudio auto-complete means long
names are better than vague ones!

Good names save confusion later.1

[1] "There are only two hard things in Computer Science: cache invalidation and
naming things." - Phil Karlton

23 / 54

Using Objects
An object's name represents the information stored in that object, so you can
treat the object's name as if it were the values stored inside.

new.object + 10

[1] 154

new.object + new.object

[1] 288

sqrt(new.object)

[1] 12

24 / 54

Creating Vectors
A vector is a series of elements, such as numbers.

You can create a vector and store it as an object in the same way. To do this,
use the function c() which stands for "combine" or "concatenate".

new.object <- c(4, 9, 16, 25, 36)
new.object

[1] 4 9 16 25 36

If you name an object the same name as an existing object, it will overwrite it.

You can provide a vector as an argument for many functions.

sqrt(new.object)

[1] 2 3 4 5 6

25 / 54

More Complex Objects
The same principles can be used to create more complex objects like
matrices, arrays, lists, and dataframes (lists which look like matrices but
can hold multiple data types at once).

Most data sets you will work with will be read into R and stored as a
dataframe, so this course will mainly focus on manipulating and visualizing
these objects.

Before we get into these, let's revisit R Markdown.

26 / 54

R Markdown

27 / 54

R Markdown Documents
Let's try making an R Markdown file:

1. Choose File > New File > R Markdown...
2. Make sure HTML Output is selected and click OK
3. Save the file somewhere, call it my_first_rmd.Rmd
4. Click the Knit HTML button
5. Watch the progress in the R Markdown pane, then gaze upon your result!

You may also open up the file in your computer's browser if you so desire,
using the Open in Browser button at the top of the preview window.

28 / 54

R Markdown Headers
The header of an .Rmd file is a YAML (YAML Ain't Markup Language1) code
block, and everything else is part of the main document.

title: "Untitled"
author: "Charles Lanfear"
date: "March 28, 2018"
output: html_document

To mess with global formatting, you can modify the header2.

output:
 html_document:
 theme: readable

[1] Nerds love recursive acronyms.
[2] Be careful though, YAML is space-sensitive; indents matter!

29 / 54

http://yaml.org/
http://rmarkdown.rstudio.com/html_document_format.html

Output
bold/strong emphasis

italic/normal emphasis

Header

Subheader

Subsubheader

Block quote from famous
person

Syntax
bold/strong emphasis

italic/normal emphasis

Header

Subheader

Subsubheader

> Block quote from
> famous person

R Markdown Syntax

30 / 54

Output
1. Ordered lists
2. Are real easy

1. Even with sublists
2. Or when lazy with

numbering

Unordered lists
Are also real easy

Also even with sublists

URLs are trivial

Syntax
1. Ordered lists
1. Are real easy
 1. Even with sublists
 1. Or when lazy with numbering

* Unordered lists
* Are also real easy
 + Also even with sublists

[URLs are trivial](http://www.uw.edu

![pictures too](http://depts.washing

More R Markdown Syntax

31 / 54

http://www.uw.edu/

Output

You can put some math

right up in there.

Or a sentence with code-looking
font .

Or a block of code:

y <- 1:5
z <- y^2

Syntax
You can put some math $y= \left(
\frac{2}{3} \right)^2$ right up in
there

`$$\frac{1}{n} \sum_{i=1}^{n}
x_i = \bar{x}_n$$`

Or a sentence with `code-looking fon

Or a block of code:

    ``` 
    y <- 1:5 
    z <- y^2 
    ``` 

Formulae and Syntax

y = ()
22

3

n

∑
i=1

xi = x̄n

1

n

32 / 54

R Markdown Tinkering
R Markdown docs can be modified in many ways. Visit these links for more
information.

Ways to modify the overall document appearance
Ways to format parts of your document
R Markdown: The Definitive Guide

33 / 54

http://rmarkdown.rstudio.com/html_document_format.html
http://rmarkdown.rstudio.com/authoring_basics.html
https://bookdown.org/yihui/rmarkdown/

Formatting Caveats
To keep R Markdown dead-simple, it lacks some features you might
occasionally want to use. Your options for fancier documents are:

Templates
Use HTML with CSS for custom formatting1

Use LaTeX and .Rnw files instead of .Rmd2

For day-to-day use, plain vanilla R Markdown does the job.

For handouts, memos, and homeworks, default R Markdown PDFs look
surprisingly good!

[1] These slides were created using Xaringan, a blend of RMarkdown and CSS.

[2] Here be dragons! LaTeX is powerful but exacts a terrible price.

34 / 54

https://github.com/yihui/xaringan

R Code in R Markdown
Inside RMarkdown, lines of R code are called chunks. Code is sandwiched
between sets of three backticks and {r} . This chunk of code...

```{r}
summary(cars)
```

Produces this output in your document:

summary(cars)

speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00

35 / 54

Chunk Options
Chunks have options that control what happens with their code, such as:

echo=FALSE : Keeps R code from being shown in the document

eval=FALSE : Shows R code in the document without running it

include=FALSE : Hides all output but still runs code (good for setup
chunks where you load packages!)

results='hide' : Hides R's (non-plot) output from the document

cache=TRUE : Saves results of running that chunk so if it takes a while,
you won't have to re-run it each time you re-knit the document

fig.height=5, fig.width=5 : modify the dimensions of any plots that
are generated in the chunk (units are in inches)

Some of these can be modified using the gear-shaped Modify Chunk Options
button in each chunk. There are a lot of other options, however.

36 / 54

https://yihui.name/knitr/options/

Playing with Chunk Options
Try adding or changing the chunk options (separated by commas) for the two
chunks in my_first_Rmd.Rmd and re-knitting to check what happens.

You can also name your chunks by putting something after the r before the
chunk options.

```{r summarize_cars, echo=FALSE}
summary(cars)
```

After you name your chunks, look what happens in the dropdown on the
bottom left of your editor pane.

Naming chunks allows you to browse through an RMarkdown document by
named chunks.

You can also browse by sections named using headers and subheaders.

37 / 54

In-Line R code
Sometimes we want to insert a value directly into our text. We do that using
code in single backticks starting off with r .

Four score and seven years ago is the same as `r 4*20 + 7` years.

Four score and seven years ago is the same as 87 years.

Maybe we've saved a variable in a chunk we want to reference in the text:

x <- sqrt(77) # <- is how we assign objects

The value of `x` rounded to the nearest two decimals is `r round(x, 2)`.

The value of x rounded to the nearest two decimals is 8.77.

38 / 54

This is Amazing!
Having R dump values directly into your document protects you from silly
mistakes:

Never wonder "how did I come up with this quantity?" ever again: Just
look at your formula in your .Rmd file!

Consistency! No "find/replace" mishaps; reference a variable in-line
throughout your document without manually updating if the calculation
changes (e.g. reporting sample sizes).

You are more likely to make a typo in a "hard-coded" number than you
are to write R code that somehow runs but gives you the wrong thing.

39 / 54

Example: Keeping Dates
In your YAML header, make the date come from R's Sys.time() function by
changing:

date: "March 30, 2016"

to:

date: "`r Sys.time()`"

Fancier option: Use this instead to take today's date and make it read nicely:1

date: "`r format(Sys.Date(), format='%B %d, %Y')`"

[1] format(Sys.Date(), format='%B %d, %Y') says "format system date as month
name (%B), day-of-month (%d), and four-digit year (%Y): March 31, 2021. See ?
strptime for these format codes.

40 / 54

Data Frames

41 / 54

What's Up with cars?
In the sample R Markdown document you are working on, we can load the
built-in data cars , which loads as a dataframe, a type of object mentioned
earlier. Then, we can look at it in a couple different ways.

data(cars) loads this dataframe into the Global Environment (as a
promise1).

View(cars) pops up a Viewer pane ("interactive" use only, don't put in R
Markdown document!) or...

head(cars, 5) # prints first 5 rows, see tail() too

speed dist
1 4 2
2 4 10
3 7 4
4 7 22
5 8 16

[1] Promises are unevaluated arguments.
Read more about R's lazy evaluation
here.

42 / 54

http://adv-r.had.co.nz/Functions.html

Tell Me More About cars
str() displays the structure of an object:

str(cars) # str[ucture]

'data.frame': 50 obs. of 2 variables:
$ speed: num 4 4 7 7 8 9 10 10 10 11 ...
$ dist : num 2 10 4 22 16 10 18 26 34 17 ...

summary() displays summary information1:

summary(cars)

speed dist
Min. : 4.0 Min. : 2.00
1st Qu.:12.0 1st Qu.: 26.00
Median :15.0 Median : 36.00
Mean :15.4 Mean : 42.98
3rd Qu.:19.0 3rd Qu.: 56.00
Max. :25.0 Max. :120.00

[1] Note R is object-oriented: summary()
provides different information for
different types of objects!

43 / 54

https://adv-r.hadley.nz/oo.html

hist(cars$speed) # Histogram hist(cars$dist)

Ugly Pictures of cars
hist() generates a histogram of a vector. Note you can access a vector that is
a column of a dataframe using $, the extract operator.

44 / 54

Drawing Slightly Less Ugly Pictures

hist(cars$dist,
 xlab = "Distance (ft)", # X axis label
 main = "Observed stopping distances of cars") # Title

45 / 54

Math with cars
If you put an assignment such as x <- y in parentheses () , R will print the
output of the assignment out for you in your document. Otherwise, it won't
show the value.

(dist_mean <- mean(cars$dist))

[1] 42.98

(speed_mean <- mean(cars$speed))

[1] 15.4

46 / 54

Drawing Still Ugly Pictures
plot(dist ~ speed, data = cars,
 xlab = "Speed (mph)",
 ylab = "Stopping distance (ft)",
 main = "Speeds and stopping distances of cars",
 pch = 16) # Point size
abline(h = dist_mean, col = "firebrick")
abline(v = speed_mean, col = "cornflowerblue")

Note that dist ~ speed is a formula of
the type y ~ x . The first element (dist)
gets plotted on the y-axis and the second
(speed) goes on the x-axis. Regression
formulae follow this convention as well!

47 / 54

swiss Time
Let's switch gears to the swiss data frame built in to R.

First, use ?swiss to see what things mean.

Then, load it using data(swiss)

Add chunks to your R Markdown document inspecting swiss, defining
variables, doing some exploratory plots using hist or plot.

You might experiment with colors and shapes.

48 / 54

http://www.stat.columbia.edu/~tzheng/files/Rcolor.pdf
http://www.cookbook-r.com/Graphs/Shapes_and_line_types/

Looking at swiss
pairs(swiss, pch = 8, col = "violet",
 main = "Pairwise comparisons of Swiss variables")

pairs() is a pairwise scatterplot function. Good for a quick look at small datasets, but
mostly useless for larger data.

49 / 54

Installing Packages
Let's make a table that looks a little less code-y in the output. To do this, we'll
want to install a package called pander . Packages contain premade functions
and/or data we can use. R's strength is its wide variety of packages!

In the console: install.packages("pander") .

Note that unlike the library() command, the name of a package to be
installed must be in quotes. This is because the name here is a search term
(text, not an object!) while for library() it is an actual R object.

Once you install a package, you don't need to re-install it until you update
R. Consequently, you should not include install.packages() in any
markdown document or R script!

50 / 54

Making Tables
library(pander) # loads pander, do once in your session
pander(summary(swiss), style = "rmarkdown", split.tables = 120)

Fertility Agriculture Examination Education Catholic Infant.Mortality

Min. :35.00 Min. : 1.20 Min. : 3.00 Min. : 1.00 Min. : 2.150 Min. :10.80

1st Qu.:64.70 1st Qu.:35.90 1st Qu.:12.00 1st Qu.: 6.00 1st Qu.: 5.195 1st Qu.:18.15

Median :70.40 Median :54.10 Median :16.00 Median : 8.00 Median : 15.140 Median :20.00

Mean :70.14 Mean :50.66 Mean :16.49 Mean :10.98 Mean : 41.144 Mean :19.94

3rd Qu.:78.45 3rd Qu.:67.65 3rd Qu.:22.00 3rd Qu.:12.00 3rd Qu.: 93.125 3rd Qu.:21.70

Max. :92.50 Max. :89.70 Max. :37.00 Max. :53.00 Max. :100.000 Max. :26.60

Note that we put the summary(swiss) function call inside the pander() call. This is
called nesting functions and is very common. I'll introduce a method next week to avoid
confusion from nesting too many functions inside each other.

51 / 54

Data Look a Little Nicer This Way

pander(head(swiss, 5), style = "rmarkdown", split.tables = 120)

 Fertility Agriculture Examination Education Catholic Infant.Mortality

Courtelary 80.2 17 15 12 9.96 22.2

Delemont 83.1 45.1 6 9 84.84 22.2

Franches-Mnt 92.5 39.7 5 5 93.4 20.2

Moutier 85.8 36.5 12 7 33.77 20.3

Neuveville 76.9 43.5 17 15 5.16 20.6

split.tables = 120 tells pander to break a table into multiple tables if it will be
over 120 characters wide. Adjust this to get widths just right.

52 / 54

Homework
Write up a .Rmd file showing some exploratory analyses of the Swiss fertility
data. Upload both the .Rmd file and the .html file to Canvas. You must
upload both for credit.

Mix in-line R calculations, tables, R output, and plots with text describing the
relationships you see. Include at least one plot and one table. You are
encouraged to include more! You must use in-line R calculations/references at
least once (e.g. functions like nrow() , mean() , sd() , cor() , median() ,
min()) and may not hard-code any numbers referenced in your text.

Your document should be pleasant for a peer to look at, with some
organization using sections or lists, and all plots labeled clearly. Use chunk
options echo and results to limit the code/output you show in the .html.
Discussion of specific values should be summarized in sentences in your text--
-not as printed code and output---and rounded so as not to be absurdly precise
(e.g. round x with round(x, 2)).

53 / 54

Grading Rubric
0 - Didn't turn anything in.

1 - Turned in but low effort, ignoring many directions.

2 - Decent effort, followed directions with some minor issues.

3 - Nailed it!

54 / 54

