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Bad Repetition
If someone doesn't know better, they might find the means of variables in the
swiss  data by typing in a line of code for each column:

mean1 <- mean(swiss$Fertility)
mean2 <- mean(swiss$Agriculture)
mean3 <- mean(swissExamination)
mean4 <- mean(swiss$Fertility)
mean5 <- mean(swiss$Catholic)
mean5 <- mean(swiss$Infant.Mortality)
c(mean1, mean2 mean3, mean4, mean5, man6)

Can you spot the problems?

How upset would they be if the swiss  data had 200 columns instead of 6?
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Good Repetition
You will learn general solutions today—and better but more specific ones next
week:

swiss_means <- setNames(numeric(ncol(swiss)), colnames(swiss))
for(i in seq_along(swiss)) {
    swiss_means[i] <- mean(swiss[[i]])
}
swiss_means

##        Fertility      Agriculture      Examination        Education 
##             70.1             50.7             16.5             11.0 
##         Catholic Infant.Mortality 
##             41.1             19.9

setNames()  adds names  (second argument) to its first argument. 
numeric()  creates a numeric vector of length equal to its first argument.
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Don't Repeat Yourself (DRY)!
The DRY idea: Computers are much better at doing the same thing over and
over again than we are.

Writing code to repeat tasks for us reduces the most common human coding
mistakes.

It also substantially reduces the time and effort involved in processing large
volumes of data.

Lastly, compact code is more readable and easier to troubleshoot.
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The Agenda: Programming
Today:

for()  and while()  loop programming (general methods)
Vectorization to avoid loops

Next week:

Writing your own functions!
Looping methods based on functions
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What is a Loop?
I'll be bad and cite Wikipedia:

A loop is a sequence of statements which is specified once but
which may be carried out several times in succession. The code
"inside" the loop is obeyed a specified number of times, or once for
each of a collection of items, or until some condition is met, or
indefinitely.'' (Wikipedia)
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for() Loops
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The for() Loop
for()  loops are the most general kind of loop, found in pretty much every
programming language.

"For each of these values—in order—do this"

Given a set of values...

1. You set an index variable (often i) equal to the first value
2. Do some set of things (usually depending on current value)
3. Is there a next value?

YES: Update to next value, go back to 2.
NO: Exit loop

We are looping through values and repeating some actions.
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for() Loop: Diagram
Given a set of values...

Set i to
first value

Exit
Loop

YES

NO

Set i to
next
value

Run code
using i 

Are there
more i
values? 

"Inside" of Loop
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for() Loop: Example
for(i in 1:10) {
    # inside for, output won't show up without print()
    print(i^2) 
}

## [1] 1
## [1] 4
## [1] 9
## [1] 16
## [1] 25
## [1] 36
## [1] 49
## [1] 64
## [1] 81
## [1] 100

Note this runs 10 separate print commands, which is why each line starts with
[1] .
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for(i in 1:3) {
    print(i^2) 
}

## [1] 1
## [1] 4
## [1] 9

i <- 1
print(i^2) 
i <- 2
print(i^2)
i <- 3
print(i^2)

## [1] 1
## [1] 4
## [1] 9

These Do the Same Thing
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Iteration Conventions
We call what happens in the loop for a particular value one iteration.

Iterating over indices 1:n  is very common. n  might be the length of a
vector, the number of rows or columns in a matrix or data frame, or the
length of a list.

Common notation: i  is the object that holds the current value inside the
loop.

If loops are nested, you will often see j  and k  used for the inner
loops.

This notation is similar to indexing in mathematical symbols (e.g )

Note i  (and j ,k , etc) are just normal objects. You can use any other
names you want.

Ex: When iterating over rows and/or columns, I often use row  and/or
col !

n

∑
i=1
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Iterate Over Characters
What we iterate over doesn't have to be numbers 1:n  or numbers at all! You
can also iterate over a character vector in R:

some_letters <- letters[4:6] # Vector of letters d,e,f
for(i in some_letters) {
    print(i)
}

## [1] "d"
## [1] "e"
## [1] "f"

i # in R, this will exist outside of the loop!

## [1] "f"
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seq_along() and Messages
seq_along(x)  creates an integer vector equal to 1:length(x) .

When you want to loop over something that isn't numeric but want to use a
numeric index of where you are in the loop, seq_along  is useful:

for(a in seq_along(some_letters)) {
    print(paste0("Letter ", a, ": ", some_letters[a]))
}

## [1] "Letter 1: d"
## [1] "Letter 2: e"
## [1] "Letter 3: f"

a # The object `a` contains the number of the last iteration

## [1] 3
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Pre-Allocation
Usually in a for()  loop, you aren't just printing output, but want to store
results from calculations in each iteration somewhere.

To do that, figure out what you want to store, and pre-allocate an object of
the right size as a placeholder (typically with missing values as placeholders).

Examples of what to pre-allocate based on what you store:

Single numeric value per iteration: numeric(num_of_iters)
Single character value per iteration: character(num_of_iters)
Single true/false value per iteration: logical(num_of_iters)
Numeric vector per iteration: matrix(NA, nrow = num_of_iters,
ncol = length_of_vector)
Some complicated object per iteration: vector("list",
num_of_iters)
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Pre-Allocation: Numeric
iters  <- 10 # Set number of interations
output <- numeric(iters) # Pre-allocate numeric vector 

for(i in 1:iters) { # Run code below iters times
    output[i] <- (i-1)^2 + (i-2)^2
}
output # Display output

##  [1]   1   1   5  13  25  41  61  85 113 145

Steps:

1. Set a number of iterations1

2. Pre-allocated a numeric vector of that length
3. Ran ten iterations where the output is a mathematical function of each

iteration number.

[1] We could skip this, but it is useful if you want to make code flexible.
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setNames()
The function setNames()  can be handy for pre-allocating a named vector:

(names_to_use <- paste0("iter ", letters[1:5]))

## [1] "iter a" "iter b" "iter c" "iter d" "iter e"

# without setNames:
a_vector <- numeric(5)
names(a_vector) <- names_to_use

# with setNames: first arg = values, second = names
(a_vector <- setNames(numeric(5), names_to_use))

## iter a iter b iter c iter d iter e 
##      0      0      0      0      0
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Extended Regression

Example
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Premise
Suppose we have some data that we want to try fitting several regression
models to.

We want to store the results of fitting each regression as elements of a list so
that we can compare them.

To do this consistently, we'll write a loop. That way no matter if we had 2
models or 200 models, we could use the same code.

After we do this, we'll try something more advanced with loops: Cross-
validating regressions to get an estimate of their true accuracy in predicting
values out-of-sample.
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Simulating Data
Let's simulate some fake data for this using the rnorm()  function to generate
random values from a normal distribution.

set.seed(98105) # Making sure values always the same
n <- 300
x <- rnorm(n, mean = 5, sd = 4)
sim_data <- 
  data.frame(x = x,
             y = -0.5 * x + 0.05 * x^2 + rnorm(n, sd = 1))

This generates a dataframe of 300 observations where y  is dependent on x ,
with some uncorrelated, normally-distributed residual (from rnorm()).

If you followed the 2014 scandal in political science when a grad student faked data for
a publication in Science, it is believed he used the rnorm()  function to add noise to an
existing dataset to get his values.

20 / 52
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Plot of sim_data
ggplot(data = sim_data, aes(x = x, y = y)) +
  geom_point() + 
  ggtitle("Simulated Data")
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Candidate Regression Models
Let's say we want to consider several different regression models to draw
trendlines through these data:

Intercept Only: draw a horizontal line that best fits the y  values.

Linear Model: draw a line that best fits the y  values as a function of x .

Quadratic Model: draw a quadratic curve that best summarizes the y
values as a function of x .

Cubic Model: draw a cubic curve that best summarizes the y  values as a
function of x .

E[yi|xi] = β0

E[yi|xi] = β0 + β1 ⋅ xi

E[yi|xi] = β0 + β1 ⋅ xi + β2 ⋅ x2
i

E[yi|xi] = β0 + β1 ⋅ xi + β2 ⋅ x2
i + β3 ⋅ x3

i
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Preallocating a List
Let's make a named character vector for the formulas we'll use in lm() :

models <- c("intercept only" = "y ~ 1", # Name on left, formula on right
            "linear"         = "y ~ x",
            "quadratic"      = "y ~ x + I(x^2)",
            "cubic"          = "y ~ x + I(x^2) + I(x^3)")

Then pre-allocate a list to store the fitted models:

fitted_lms        <- vector("list", length(models)) # initialize list
names(fitted_lms) <- names(models) # give entries good names
fitted_lms # display the pre-allocated (empty) list

## $`intercept only`
## NULL
## 
## $linear
## NULL
## 
## $quadratic
## NULL
## 
## $cubic
## NULL
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Fitting Models in for() Loop
Next, we'll loop over the models  vector and fit each one, storing it in the
appropriate slot.

The formula()  function converts a character string describing a model to a
formula object readable by lm() :

for(mod in names(models)) {
    fitted_lms[[mod]] <- lm(formula(models[mod]), data = sim_data)
}

What this does:

For each model name (which will be referred to as mod)...

1. Fit a lm()  using the formula with that name (mod).

2. Assign the output to the element of the list with the matching name.
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Getting Predictions
To plot the fitted models, we can first get predicted y  values from each at the
x  values in our data.

# initialize data frame to hold predictions
predicted_data <- sim_data
for(mod in names(models)) {
    # make a new column in predicted_data for each model's predictions
    predicted_data[[mod]] <- predict(fitted_lms[[mod]],
                                newdata = predicted_data)
}

What this does:

For each named lm()  model output...

1. Get predicted values from the associated model (predict())
2. Save each of those predicted values as a new column in predicted_data .

Values of mod  will be the new column names!
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Predictions
head(predicted_data, 10)

##        x      y intercept only linear quadratic  cubic
## 1  -5.80  6.140         -0.372  0.160     4.985  4.983
## 2   9.26 -0.790         -0.372 -0.579    -0.312 -0.312
## 3   1.40  1.177         -0.372 -0.194    -0.568 -0.567
## 4   5.23 -1.833         -0.372 -0.381    -1.266 -1.266
## 5  12.24  1.608         -0.372 -0.726     1.516  1.517
## 6   8.30 -2.778         -0.372 -0.532    -0.694 -0.694
## 7   9.66  1.185         -0.372 -0.599    -0.118 -0.118
## 8  10.25 -0.351         -0.372 -0.628     0.192  0.192
## 9   9.44  1.592         -0.372 -0.588    -0.228 -0.228
## 10  1.46 -1.329         -0.372 -0.197    -0.591 -0.590
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Gathering Predictions
We can use tidyr::pivot_longer()  to tidy the predictions, then set the
levels of the Model  variable.

library(tidyr)
tidy_predicted_data <- predicted_data %>%
    pivot_longer(3:6, 
                 names_to  = "Model", 
                 values_to = "Prediction") %>%
    mutate(Model = factor(Model, levels = names(models)))
head(tidy_predicted_data) # Displaying some rows

## # A tibble: 6 x 4
##       x      y Model          Prediction
##   <dbl>  <dbl> <fct>               <dbl>
## 1 -5.80  6.14  intercept only     -0.372
## 2 -5.80  6.14  linear              0.160
## 3 -5.80  6.14  quadratic           4.98 
## 4 -5.80  6.14  cubic               4.98 
## 5  9.26 -0.790 intercept only     -0.372
## 6  9.26 -0.790 linear             -0.579 levels = names(models)  sets

the Model  levels to be in the same
order as our original vector!
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Plotting Predictions
We'll use ggplot2  to plot these tidied up predictions. You'll see us use
multiple data sets on the same plot: Look at the geom_line()  call.

ggplot() +
    geom_point(data = sim_data, # Original data as points
               aes(x = x, 
                   y = y)) + 
    geom_line(data = tidy_predicted_data, # Predicted data!
              aes(x     = x, 
                  y     = Prediction, 
                  group = Model, 
                  color = Model),
              alpha = 0.5, 
              size  = 2) +
    ggtitle("Predicted trends from regression") +
    theme_bw()

28 / 52



Plotted Predictions

Which looks best to you?
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Cross Validation: What is it?
Cross validation is a widely-used method to estimate how well a model
makes predictions on unseen data (data not used in fitting the model). The
procedure:

Split your data into  folds (pieces)

For each fold :

Fit the model to all the data except that in fold 

Make predictions for the omitted data in fold 

Calculate the mean squared error (or your favorite measure of accuracy
comparing predictions to actuals): 

A model that fits well will have low mean squared error. Models that are either
too simple or too complicated will tend to make bad predictions and thus high
mean squared error.

K

i = 1, … , K

i

i

MSE = ∑n

i=1(actual yi − predicted yi)21
n
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Fold  1
Predictions

Predicted Y

Iteration  1

(1) Model Y~X
Using Folds 2-5

(2) Predict Y
with X in Fold 1

Fold  1
Rows

Fold  2
Rows

Fold  3
Rows

Fold  4
Rows

Fold  5
Rows

Real Y, X

Pre-Allocated
Space

Pre-Allocated
Space

Pre-Allocated
Space

Pre-Allocated
Space
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Fold  1
Predictions

Fold  2
Predictions

Fold  3
Predictions

Fold  4
Predictions

Fold  5
Predictions

Predicted Y

Iteration  5

(1) Model Y~X
Using Folds 1-4

(2) Predict Y
with X in Fold 5

Fold  1
Rows

Fold  2
Rows

Fold  3
Rows

Fold  4
Rows

Fold  5
Rows

Real Y, X
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Pre-Allocating for CV
Let's split the data into  folds. We'll make a new data frame to hold the
data and sampled fold numbers that we will add predictions to later.

We'll get the folds using the sample()  function without replacement on a
vector as long as our data that contains the numbers 1 through  repeated:

K <- 10
CV_predictions      <- sim_data
CV_predictions$fold <- sample(rep(1:K, length.out = nrow(CV_predictions)),
                              replace = FALSE)
CV_predictions[ , names(models)] <- NA
head(CV_predictions)

##       x     y fold intercept only linear quadratic cubic
## 1 -5.80  6.14    7             NA     NA        NA    NA
## 2  9.26 -0.79    4             NA     NA        NA    NA
## 3  1.40  1.18    6             NA     NA        NA    NA
## 4  5.23 -1.83    4             NA     NA        NA    NA
## 5 12.24  1.61    5             NA     NA        NA    NA
## 6  8.30 -2.78    3             NA     NA        NA    NA

K = 10

K
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Double-Looping for CV
Next, let's loop over each model (mod), and within each model loop over each
fold (k) to fit the model and make predictions.

for(mod in names(models)) {
    for(k in 1:K) {
        # TRUE/FALSE vector of rows in the fold
        fold_rows <- (CV_predictions$fold == k)
        # fit model to data not in fold
        temp_mod <- lm(formula(models[mod]),
                       data = CV_predictions[!fold_rows, ])
        # predict on data in fold
        CV_predictions[fold_rows, mod] <- 
           predict(temp_mod, newdata = CV_predictions[fold_rows, ])
    }
}

Note the models are fit without the fold rows, but prediction is done on only
the left-out fold rows.
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Which Did Best?
Let's write another loop to compute the mean squared error of these CV
predictions.

The squared error is equal to the difference between the real values and
predictions squared. The MSE is the mean of all the squared errors of each
prediction.

CV_MSE <- setNames(numeric(length(models)), names(models))
for(mod in names(models)) {
    pred_sq_error <- (CV_predictions$y - CV_predictions[[mod]])^2
    CV_MSE[mod]   <- mean(pred_sq_error)
}
CV_MSE

## intercept only         linear      quadratic          cubic 
##           2.56           2.60           1.06           1.06

Based on these results, which model would you choose?
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Conditional Flow
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if() then else
You've seen ifelse()  before for logical checks on a whole vector. For
checking whether a single logical statement holds and then conditionally
executing a set of actions, use if()  and else :

for(i in 1:10) {
  if(i %% 2 == 0) { # %% gets remainder after division
    print(paste0("The number ", i, " is even."))
  } else if(i %% 3 == 0) {
    print(paste0("The number ", i, " is divisible by 3."))
  } else {
    print(paste0("The number ", i, " is not divisible by 2 or 3."))
  }
}

Warning! else  needs to be on same line as the closing brace }  of previous
if() .
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if(), else: Output
The loop from the previous slide produces this output:

## [1] "The number 1 is not divisible by 2 or 3."
## [1] "The number 2 is even."
## [1] "The number 3 is divisible by 3."
## [1] "The number 4 is even."
## [1] "The number 5 is not divisible by 2 or 3."
## [1] "The number 6 is even."
## [1] "The number 7 is not divisible by 2 or 3."
## [1] "The number 8 is even."
## [1] "The number 9 is divisible by 3."
## [1] "The number 10 is even."
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Handling Special Cases
Aside from the previous toy example, if()  statements are useful when you
have to handle special cases.

if()  statements can be used to make a loop ignore or fix problematic cases.

They are also useful for producing error messages, by generating a message if
an input value is not what is expected.
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Loop Load Example 1
One common use of a loop is for loading many individual data files at once—
like an entire directory of Excel files—to combine them into one data set.

(1) Let's say we have a folder filled with .csv files. We can get the file names in
a folder using list.files() .

(file_list  <- list.files("./example_data/"))

##  [1] "ex_dat_1.csv"  "ex_dat_10.csv" "ex_dat_2.csv"  "ex_dat_3.csv" 
##  [5] "ex_dat_4.csv"  "ex_dat_5.csv"  "ex_dat_6.csv"  "ex_dat_7.csv" 
##  [9] "ex_dat_8.csv"  "ex_dat_9.csv"
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Loop Load Example 2
(2) Let's populate an empty list of the same length as our file list:

data_list  <- vector("list", length(file_list))

(3) For nice object names, we can use stringr  to remove the .csv .

(data_names <- stringr::str_remove(file_list, ".csv"))

##  [1] "ex_dat_1"  "ex_dat_10" "ex_dat_2"  "ex_dat_3"  "ex_dat_4" 
##  [6] "ex_dat_5"  "ex_dat_6"  "ex_dat_7"  "ex_dat_8"  "ex_dat_9"

(4) Then assign those names to the list.

names(data_list) <- data_names
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Loop Load Example 3
(5) Then, let's run a loop that reads in each data file and writes it to the
appropriate element of data_list .

library(readr) # readr to load the csv files
for (i in seq_along(file_list)){
  data_list[[ data_names[i] ]] <- 
    read_csv(paste0("./example_data/", file_list[i]))
}
head(data_list[[1]], 3)

## # A tibble: 3 x 3
##      id      x     z
##   <dbl>  <dbl> <dbl>
## 1    44  0.516 0.381
## 2    49  2.17  0.346
## 3    50 -0.122 0.711
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Loop Load Example 4
names(data_list[[1]])

## [1] "id" "x"  "z"

names(data_list[[2]])

## [1] "id" "x"  "z"

In this case every data frame has the same columns, so we can combine them
all into one data frame.

complete_data <- bind_rows(data_list)
glimpse(complete_data)

## Rows: 10,000
## Columns: 3
## $ id <dbl> 44, 49, 50, 60, 62, 76, 81, 91, 113, 114, 116, 156, 157, ~
## $ x  <dbl> 0.5156, 2.1673, -0.1216, 1.0551, 0.6660, -0.0213, 1.9835,~
## $ z  <dbl> 0.3808, 0.3460, 0.7115, 0.4344, 0.6379, 0.6739, 0.9808, 0~
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while() Loops
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while()
A lesser-used looping structure is the while()  loop.

Rather than iterating over a predefined vector, the loop keeps going until
some condition is no longer true.

Let's see how many times we need to flip a coin to get 4 heads:

num_heads <- 0
num_flips <- 0
while(num_heads < 4) {
  coin_flip <- rbinom(n = 1, size = 1, prob = 0.5)
  if (coin_flip == 1) { num_heads <- num_heads + 1 }
  num_flips <- num_flips + 1
}
num_flips # follows negative binomial distribution

## [1] 6
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Vectorization
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Non-Vectorized Example
We have a vector of numbers, and we want to add 1 to each element.

my_vector <- rnorm(100000000) # Length 100 million random vector

A for()  loop works but is super slow:

for_start <- proc.time() # start the clock
new_vector <- rep(NA, length(my_vector))
for(position in 1:length(my_vector)) {
    new_vector[position] <- my_vector[position] + 1
}
(for_time <- proc.time() - for_start) # time elapsed

##    user  system elapsed 
##   93.44    0.07   93.57
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Vectorization Wins
Recognize that we can instead use R's vector addition (with recycling):

vec_start  <- proc.time()
new_vector <- my_vector + 1
(vec_time  <- proc.time() - vec_start)

##    user  system elapsed 
##    0.17    0.00    0.17

for_time / vec_time

##    user  system elapsed 
##     550     Inf     550

The vectorized method was 550 times as fast! Vector/matrix arithmetic is
implemented using fast, optimized functions that a for()  loop can't compete
with.
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Vectorization Examples
rowSums() , colSums() , rowMeans() , colMeans()  give sums or
averages over rows or columns of matrices/data frames

(a_matrix <- matrix(1:12, nrow = 3, ncol = 4))

##      [,1] [,2] [,3] [,4]
## [1,]    1    4    7   10
## [2,]    2    5    8   11
## [3,]    3    6    9   12

rowSums(a_matrix)

## [1] 22 26 30
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More Vectorization Examples
cumsum() , cumprod() , cummin() , cummax()  give back a vector with
cumulative quantities (e.g. running totals)

cumsum(1:7)

## [1]  1  3  6 10 15 21 28

pmax()  and pmin()  take a matrix or set of vectors, output the min or
max for each position (after recycling):

pmax(c(0, 2, 4), c(1, 1, 1), c(2, 2, 2))

## [1] 2 2 4
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Vectorized File Loading
vroom  is a package with vectorized loading of delimited files like .csv  files.

complete_data_vroom <- vroom::vroom(list.files("./example_data/", full.names=T))

## Rows: 10,000
## Columns: 3
## Delimiter: ","
## dbl [3]: id, x, z
## 
## Use `spec()` to retrieve the guessed column specification
## Pass a specification to the `col_types` argument to quiet this message

glimpse(complete_data_vroom)

## Rows: 10,000
## Columns: 3
## $ id <dbl> 44, 49, 50, 60, 62, 76, 81, 91, 113, 114, 116, 156, 157, ~
## $ x  <dbl> 0.5156, 2.1673, -0.1216, 1.0551, 0.6660, -0.0213, 1.9835,~
## $ z  <dbl> 0.3808, 0.3460, 0.7115, 0.4344, 0.6379, 0.6739, 0.9808, 0~

This replaced our entire data loading loop with one line!
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Homework
Reminder: HW 5 Part II assigned last week is due midnight Tuesday.
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