
CSSS508, Week 10

Model Results and Reproducibility

Chuck Lanfear

Jun 2, 2021

Updated: Jun 1, 2021

Topics for Today
Working with Model Results

Tidy model output with broom
Visualizing models with ggeffects
Tables with gt , modelsummary , and gtsummary

Reproducible Research

Best Practices

Organization
Portability
Version Control

Wrapping up the course

2 / 79

Working with Model Results

3 / 79

broom
broom is a package that "tidies up" the output from models such a lm() and
glm() .

It has a small number of key functions:

tidy() - Creates a dataframe summary of a model.
augment() - Adds columns—such as fitted values—to the data used in the
model.
glance() - Provides one row of fit statistics for models.

library(broom)

4 / 79

Model Output is a List
lm() and summary() produce lists as output, which cannot go directly into
tidyverse functions, particularly those in ggplot2 .

lm_1 <- lm(yn ~ num1 + fac1, data = ex_dat)
summary(lm_1)

Call:
lm(formula = yn ~ num1 + fac1, data = ex_dat)

Residuals:
Min 1Q Median 3Q Max
-9.9971 -1.7452 -0.1423 2.1099 7.4219

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.1632 0.3826 3.041 0.00268 **
num1 0.6932 0.1044 6.643 2.96e-10 ***
fac1B 0.7495 0.5177 1.448 0.14932
fac1C 2.2360 0.5009 4.464 1.36e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.945 on 196 degrees of freedom
Multiple R-squared: 0.2364, Adjusted R-squared: 0.2247
F-statistic: 20.22 on 3 and 196 DF, p-value: 1.849e-11
....

5 / 79

Model Output Varies!
Each type of model also produces somewhat different output, so you can't just
reuse the same code to handle output from every model.

glm_1 <- glm(yb ~ num1 + fac1, data = ex_dat, family=binomial(link="logit"))
summary(glm_1)

Call:
glm(formula = yb ~ num1 + fac1, family = binomial(link = "logit"),
data = ex_dat)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.994 -1.056 -0.421 1.020 2.207

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.09058 0.30014 -3.634 0.000280 ***
num1 0.38134 0.08786 4.340 1.42e-05 ***
fac1B 0.49142 0.37958 1.295 0.195450
fac1C 1.29566 0.37993 3.410 0.000649 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

....

6 / 79

broom::tidy()
tidy() produces similar output, but as a dataframe.

lm_1 %>% tidy()

A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) 1.16 0.383 3.04 2.68e- 3
2 num1 0.693 0.104 6.64 2.96e-10
3 fac1B 0.749 0.518 1.45 1.49e- 1
4 fac1C 2.24 0.501 4.46 1.36e- 5

Each type of model (e.g. glm , lmer) has a different method with its own
additional arguments. See ?tidy.lm for an example.

7 / 79

broom::tidy()
This output is also completely identical between different models.

This can be very useful and important if running models with different test
statistics... or just running a lot of models!

glm_1 %>% tidy()

A tibble: 4 x 5
term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>
1 (Intercept) -1.09 0.300 -3.63 0.000280
2 num1 0.381 0.0879 4.34 0.0000142
3 fac1B 0.491 0.380 1.29 0.195
4 fac1C 1.30 0.380 3.41 0.000649

8 / 79

broom::glance()
glance() produces dataframes of fit statistics for models.

If you run many models, you can compare each model row-by-row in each
column... or even plot their different fit statistics to allow holistic comparison.

glance(lm_1)

A tibble: 1 x 12
r.squared adj.r.squared sigma statistic p.value df logLik AIC
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 0.236 0.225 2.95 20.2 1.85e-11 3 -498. 1006.
... with 4 more variables: BIC <dbl>, deviance <dbl>,
df.residual <int>, nobs <int>

9 / 79

broom::augment()
augment() takes values generated by a model and adds them back to the
original data. This includes fitted values, residuals, and leverage statistics.

augment(lm_1) %>% head()

A tibble: 6 x 9
yn num1 fac1 .fitted .resid .hat .sigma .cooksd .std.resid
<dbl> <dbl> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 -1.10 2.26 B 3.48 -4.58 0.0176 2.93 0.0111 -1.57
2 4.62 -2.52 C 1.65 2.97 0.0301 2.94 0.00815 1.02
3 -2.40 0.101 B 1.98 -4.39 0.0181 2.94 0.0104 -1.50
4 3.42 3.01 B 4.00 -0.578 0.0202 2.95 0.000203 -0.198
5 8.07 0.512 C 3.75 4.32 0.0146 2.94 0.00810 1.48
6 5.50 2.12 C 4.87 0.634 0.0158 2.95 0.000189 0.217

See ?augment.lm for examples of what augment() can do.

10 / 79

The Power of broom
The real advantage of broom becomes apparent when running many models
at once. Here we run separate models for each level of fac1 :

ex_dat %>%
 nest_by(fac1) %>%
 mutate(model = list(lm(yn ~ num1 + fac2, data = data))) %>%
 summarize(tidy(model), .groups = "drop")

A tibble: 9 x 6
fac1 term estimate std.error statistic p.value
<fct> <chr> <dbl> <dbl> <dbl> <dbl>
1 A (Intercept) 0.00555 0.636 0.00873 0.993
2 A num1 0.797 0.215 3.71 0.000433
3 A fac2No 2.26 0.788 2.87 0.00558
4 B (Intercept) 1.39 0.587 2.37 0.0211
5 B num1 0.713 0.171 4.17 0.000103
6 B fac2No 0.945 0.751 1.26 0.213
7 C (Intercept) 3.04 0.464 6.55 0.00000000968
8 C num1 0.693 0.153 4.52 0.0000257
9 C fac2No 0.690 0.606 1.14 0.259

nest_by() nests data into a list column by levels of fac1 .

11 / 79

Plotting Model Results

12 / 79

geom_smooth()
I have used geom_smooth() in many past examples.

geom_smooth() generates "smoothed conditional means" including loess
curves and generalized additive models (GAMs).

Note, however, that most regression models are conditional mean models,
such as ordinary least squares and generalized linear models.

We can use geom_smooth() to add a layer depicting common bivariate
models.

We'll look at this with the gapminder data from Week 2.

library(gapminder)

13 / 79

Default geom_smooth()
ggplot(data = gapminder,
 aes(x = year, y = lifeExp, color = continent)) +
 geom_point(position = position_jitter(1,0), size = 0.5) +
 geom_smooth()

By default, geom_smooth() chooses either a loess smoother (N < 1000) or a
GAM depending on the number of observations.

14 / 79

Linear glm
ggplot(data = gapminder,
 aes(x = year, y = lifeExp, color = continent)) +
 geom_point(position = position_jitter(1,0), size = 0.5) +
 geom_smooth(method = "glm", formula = y ~ x)

We could also fit a standard linear model using either method = "glm" or
method = "lm" and a formula like y ~ x .

15 / 79

Polynomial glm
ggplot(data = gapminder,
 aes(x = year, y = lifeExp, color = continent)) +
 geom_point(position = position_jitter(1,0), size = 0.5) +
 geom_smooth(method = "glm", formula = y ~ poly(x, 2))

poly(x, 2) produces a quadratic model which contains a linear term (x)
and a quadratic term (x^2).

16 / 79

More Complex Models
What if we want something more complex than a bivariate model?

What if we have a statistically complex model, like nonlinear probability
model or multilevel model?

We need to go beyond geom_smooth() !

17 / 79

But �rst, vocab!
We are often interested in what might happen if some variables take
particular values, often ones not seen in the actual data.

When we set variables to certain values, we refer to them as counterfactual
values or just counterfactuals.

For example, if we know nothing about a new observation, our prediction for
that estimate is often based on assuming every variable is at its mean.

Sometimes, however, we might have very specific questions which require
setting (possibly many) combinations of variables to particular values and
making an estimate or prediction.

Providing specific estimates, conditional on values of covariates, is a nice way
to summarize results, particularly for models with unintuitive parameters
(e.g. logit models).

18 / 79

ggeffects

19 / 79

ggeffects
If we want to look at more complex models, we can use ggeffects to create
and plot tidy marginal effects.

That is, tidy dataframes of ranges of predicted values that can be fed straight
into ggplot2 for plotting model results.

We will focus on two ggeffects functions:

ggpredict() - Computes predicted values for the outcome variable at
margins of specific variables.
plot.ggeffects() - A plot method for ggeffects objects (like
ggredict() output)

library(ggeffects)

20 / 79

Quick Simulated Data
To best show off ggeffects , I need a data frame with numeric and
categorical variables with strong relationships. It is easiest to just simulate it:

ex_dat <- data.frame(num1 = rnorm(200, 1, 2),
 fac1 = sample(c(1, 2, 3), 200, TRUE),
 num2 = rnorm(200, 0, 3),
 fac2 = sample(c(1, 2))) %>%
 mutate(yn = num1 * 0.5 + fac1 * 1.1 + num2 * 0.7 +
 fac2 - 1.5 + rnorm(200, 0, 2)) %>%
 mutate(yb = as.numeric(yn > mean(yn))) %>%
 mutate(fac1 = factor(fac1, labels = c("A", "B", "C")),
 fac2 = factor(fac2, labels = c("Yes", "No")))

Now we can get ggpredict ing!

21 / 79

ggpredict()
When you run ggpredict() , it produces a dataframe with a row for every
unique value of a supplied predictor ("independent") variable (term).

Each row contains an expected (estimated) value for the outcome
("dependent") variable, plus confidence intervals.

lm_1 <- lm(yn ~ num1 + fac1, data = ex_dat)
lm_1_est <- ggpredict(lm_1, terms = "num1")

If desired, the argument interval="prediction" will give predicted
intervals instead.

22 / 79

ggpredict() output
lm_1_est

Predicted values of yn
x = num1

x | Predicted | 95% CI

-6 | -0.68 | [-2.23, 0.87]
-4 | 0.03 | [-1.16, 1.22]
-2 | 0.73 | [-0.15, 1.61]
0 | 1.43 | [0.75, 2.12]
2 | 2.14 | [1.41, 2.87]
4 | 2.84 | [1.87, 3.81]
6 | 3.55 | [2.24, 4.85]
8 | 4.25 | [2.58, 5.93]

Adjusted for:
* fac1 = A

23 / 79

plot() for ggpredict()
ggeffects features a plot() method, plot.ggeffects() , which produces
a ggplot when you give plot() output from ggpredict() .

plot(lm_1_est)

24 / 79

Grouping with ggpredict()
When using a vector of terms , ggeffects will plot the first along the x-axis
and use others for grouping. Note we can pipe a model into ggpredict() !

glm(yb ~ num1 + fac1 + num2 + fac2, data = ex_dat, family=binomial(link = "logit")) %>%
 ggpredict(terms = c("num1", "fac1")) %>% plot()

25 / 79

Faceting with ggpredict()
You can add facet=TRUE to the plot() call to facet over grouping terms.

glm(yb ~ num1 + fac1 + num2 + fac2, data = ex_dat, family = binomial(link = "logit")) %>%
 ggpredict(terms = c("num1", "fac1")) %>% plot(facet=TRUE)

26 / 79

Counterfactual Values
You can add values in square brackets in the terms= argument to specify
counterfactual values.

glm(yb ~ num1 + fac1 + num2 + fac2, data=ex_dat, family=binomial(link="logit")) %>%
 ggpredict(terms = c("num1 [-1,0,1]", "fac1 [A,B]")) %>% plot(facet=TRUE)

27 / 79

Representative Values
You can also use [meansd] or [minmax] to set representative values.

glm(yb ~ num1 + fac1 + num2 + fac2, data = ex_dat, family = binomial(link = "logit")) %>%
 ggpredict(terms = c("num1 [meansd]", "num2 [minmax]")) %>% plot(facet=TRUE)

28 / 79

Dot plots with ggpredict()
ggpredict will produce dot plots with error bars for categorical predictors.

lm(yn ~ fac1 + fac2, data = ex_dat) %>%
 ggpredict(terms=c("fac1", "fac2")) %>% plot()

29 / 79

Notes on ggeffects
There is a lot more to the ggeffects package that you can see in the package
vignette and the github repository. This includes, but is not limited to:

Predicted values for polynomial and interaction terms

Getting predictions from models from dozens of other packages

Sending ggeffects objects to ggplot2 to freely modify plots

If you need to do something more complex then ggeffects allows, see the
Advanced Counterfactuals slides here.1

[1] This is a bit out-of-date but the approach works and will give you an idea. Some day
I'll make it into a package!

30 / 79

https://cran.r-project.org/web/packages/ggeffects/vignettes/marginaleffects.html
https://github.com/strengejacke/ggeffects
http://clanfear.github.io/CSSS508/Lectures/Week10/CSSS508_Advanced_Counterfactuals.html

Making Tables

31 / 79

pander Regression Tables
We've used pander to create nice tables for dataframes. But pander has
methods to handle all sort of objects that you might want displayed nicely.

This includes model output, such as from lm() , glm() , and summary() .

library(pander)

32 / 79

pander() and lm()
You can send an lm() object straight to pander :

pander(lm_1)

 Estimate Std. Error t value Pr(>t)

(Intercept) 37.23 1.599 23.28 2.565e-20

wt -3.878 0.6327 -6.129 1.12e-06

hp -0.03177 0.00903 -3.519 0.001451

Table: Fitting linear model: mpg ~ wt + hp

33 / 79

pander() and summary()
You can do this with summary() as well, for added information:

pander(summary(lm_1))

 Estimate Std. Error t value Pr(>t)

(Intercept) 37.23 1.599 23.28 2.565e-20

wt -3.878 0.6327 -6.129 1.12e-06

hp -0.03177 0.00903 -3.519 0.001451

Observations Residual Std. Error Adjusted

32 2.593 0.8268 0.8148

Table: Fitting linear model: mpg ~ wt + hp

R
2

R
2

34 / 79

Advanced Tables
pander tables are great for basic rmarkdown documents, but they're not
generally publication ready.

We're going to talk about a few different approaches for making nicer tables:

gt from RStudio for general table construction

modelsummary for creating model tables

gtsummary for creating data summaries

35 / 79

gt
If you need to more customizability or different output types, RStudio's gt
package is a new and powerful system for creating tables from dataframes.
We'll use dplyr 's built-in starwars data for some examples.

library(gt)
tes_chars <- starwars %>%
 unnest(films) %>%
 unnest(starships, keep_empty=TRUE) %>%
 filter(films == "The Empire Strikes Back") %>%
 select(name, species, starships, mass, height) %>%
 distinct(name, .keep_all = TRUE) %>%
 mutate(starships = ifelse(name == "Obi-Wan Kenobi" | is.na(starships),
 "No Ship", starships))
glimpse(tes_chars)

Rows: 16
Columns: 5
$ name <chr> "Luke Skywalker", "C-3PO", "R2-D2", "Darth Vader",~
$ species <chr> "Human", "Droid", "Droid", "Human", "Human", "Huma~
$ starships <chr> "X-wing", "No Ship", "No Ship", "TIE Advanced x1",~
$ mass <dbl> 77.0, 75.0, 32.0, 136.0, 49.0, 77.0, 112.0, 80.0, ~
$ height <int> 172, 167, 96, 202, 150, 182, 228, 180, 170, 66, 17~

36 / 79

https://gt.rstudio.com/

Big Improvement!

37 / 79

 Tables
gt is a very new package and is somewhat finicky when used in .pdf
documents.

For tables in —as is needed for .pdf files—I recommend also looking
into the kableExtra or flextable packages.

Like gt , kableExtra and flextable allow the construction of complex
tables in either HTML or using additive syntax similar to ggplot2 and
dplyr . flextable is also great for Word tables.

If you want to edit documents, you can do it in R using Sweave
documents (.Rnw). Alternatively, you may want to work in a dedicated
editor. I recommend Overleaf for this purpose.

RMarkdown has support for a fair amount of basic syntax if you aren't
trying to get too fancy!

LT XA
E

LT XA
E

LT XA
E

LT XA
E

LT XA
E

LT XA
E

38 / 79

http://www.overleaf.com/

flextable
This is a table produced by
flextable in Word format--
including the embedded density
images!1

Look into flextable if you'll be
working in Word or want a table
package that handles just about
every format.

[1] Embedding summary plots is a bit complicated and requires list columns (see here).

39 / 79

https://ardata-fr.github.io/flextable-book/cell-content-1.html#mini-charts

modelsummary
The modelsummary package combines broom , gt , flextable , and
kableExtra to produce tabular summaries of almost any model fit in R.

An advantage of this package is that it can produce output in every common
format: HTML, Markdown, , raw text, and even images (.png or .jpg).

library(modelsummary)

Its key function is msummary() or modelsummary() which creates summary
tables of models.

You can then build on it using gt , flextable , or kableExtra functions,
depending on the selected output format.

LT XA
E

40 / 79

msummary
Like pander() , msummary() takes a
model as an object to make a table.

mod_1 <- lm(mpg ~ wt, data = mtcars)
msummary(mod_1)

Note default modelsummary look
like pander tables because they use
Markdown.

Model 1

(Intercept) 37.285

(1.878)

wt -5.344

(0.559)

Num.Obs. 32

R2 0.753

R2 Adj. 0.745

AIC 166.0

BIC 170.4

Log.Lik. -80.015

F 91.375

41 / 79

msummary
You can present multiple models in
msummary using named lists:

mod_1 <- lm(mpg ~ wt, data = mtcars)
mod_2 <- lm(mpg ~ hp + wt, data = mtcars)
mod_3 <- lm(mpg ~ hp + wt + factor(am),
 data = mtcars)
model_list <- list("Model 1" = mod_1,
 "Model 2" = mod_2,
 "Model 3" = mod_3)
msummary(model_list)

This allows you to produce the
common (and often bad) journal
format where one starts with a
nonsensical "naive model" then
works up to the "full model" justified
by the front end of the paper.

Model 1 Model 2 Model 3

(Intercept) 37.285 37.227 34.003

(1.878) (1.599) (2.643)

wt -5.344 -3.878 -2.879

(0.559) (0.633) (0.905)

hp -0.032 -0.037

(0.009) (0.010)

factor(am)1 2.084

(1.376)

Num.Obs. 32 32 32

R2 0.753 0.827 0.840

R2 Adj. 0.745 0.815 0.823

AIC 166.0 156.7 156.1

BIC 170.4 162.5 163.5

Log.Lik. -80.015 -74.326 -73.067

F 91.375 69.211 48.960

42 / 79

PDF Output
output = "latex" produces kableExtra based output well-suited to PDFs.1

msummary(model_list, output = "latex")

For customization, I recommend referring to modelsummary 's
documentation.

43 / 79

https://vincentarelbundock.github.io/modelsummary/articles/customization.html

Saving a modelsummary
msummary(model_list, output = "ex_table.png")

To save a modelsummary object as a file, just provide a path to the output =
argument.

Specifying a suffix (e.g., .png or .pdf) will control the output format.

44 / 79

You can select gt output to enable
modifying summaries with gt
functions.

msummary(model_list, output = "gt") %>%
 tab_header(
 title = "Table 1. Linear Models",
 subtitle = "DV: Miles per Gallon"
)

Note that gt 's support for PDF
output is immature--this format is
better for HTML or image output.

modelsummary and gt

45 / 79

gtsummary
The gtsummary package is similar to modelsummary in that it takes
advantage of broom , gt , and kableExtra to provide a flexible table-making
framework.

While gtsummary can also produce model tables like modelsummary , it also
produces descriptive statistic tables for dataframes.1

library(gtsummary)

[1] I prefer modelsummary 's syntax (or manual table building) for most model tables.

46 / 79

tbl_summary()
By default, gtsummary tables
provide:

Frequencies for categorical and
binary variables
Quantiles of the form "50%
(25%, 75%)" for continuous
variables
Sample size

mtcars %>%
 select(1:9) %>%
 tbl_summary()

Characteristic N = 321

mpg 19.2 (15.4, 22.8)

cyl

4 11 (34%)

6 7 (22%)

8 14 (44%)

disp 196 (121, 326)

hp 123 (96, 180)

drat 3.70 (3.08, 3.92)

wt 3.33 (2.58, 3.61)

qsec 17.71 (16.89, 18.90)

vs 14 (44%)

am 13 (41%)

1 Median (IQR); n (%)

47 / 79

Grouping
You can provide a by = argument to
do grouped descriptives.

mtcars %>%
 select(1:9) %>%
 tbl_summary(by = "am")

Characteristic 0, N = 191 1, N = 131

mpg 17.3 (14.9, 19.2) 22.8 (21.0, 30.4)

cyl

4 3 (16%) 8 (62%)

6 4 (21%) 3 (23%)

8 12 (63%) 2 (15%)

disp 276 (196, 360) 120 (79, 160)

hp 175 (116, 192) 109 (66, 113)

drat 3.15 (3.07, 3.70) 4.08 (3.85, 4.22)

wt 3.52 (3.44, 3.84) 2.32 (1.94, 2.78)

qsec 17.82 (17.18, 19.17) 17.02 (16.46, 18.61)

vs 7 (37%) 7 (54%)

1 Median (IQR); n (%)

48 / 79

Adding gt
If you select gt output, you can
dress it up with gt functions.

mtcars %>%
 select(1:9) %>%
 tbl_summary(by = "am") %>%
 as_gt() %>%
 tab_spanner(
 label = "Transmission",
 columns = starts_with("stat_")
) %>%
 tab_header(
 title = "Motor Trend Cars",
 subtitle = "Descriptive Statistics"
)

starts_with("stat_") here
selects the statistic columns created
by tbl_summary() .

49 / 79

Bonus: corrplot
The corrplot package has functions for displaying correlograms.

These make interpreting the correlations between variables in a data set
easier than conventional correlation tables.

The first argument is a call to cor() , the base R function for generating a
correlation matrix.

See the vignette for customization options.

library(corrplot)
corrplot(
 cor(mtcars),
 addCoef.col = "white",
 addCoefasPercent=T,
 type="upper",
 order="AOE")

50 / 79

https://cran.r-project.org/web/packages/corrplot/vignettes/corrplot-intro.html

Correlogram

51 / 79

Reproducible Research

52 / 79

Why Reproducibility?
Reproducibility is not replication.

Replication is running a new study to show if and how results of a prior
study hold.
Reproducibility is about rerunning the same study and getting the same
results.

Reproducible studies can still be wrong... and in fact reproducibility makes
proving a study wrong much easier.

Reproducibility means:

Transparent research practices.
Minimal barriers to verifying your results.

Any study that isn't reproducible can be trusted only on faith.

53 / 79

Reproducibility De�nitions
Reproducibility comes in three forms (Stodden 2014):

1. Empirical: Repeatability in data collection.

2. Statistical: Verification with alternate methods of inference.

3. Computational: Reproducibility in cleaning, organizing, and presenting
data and results.

R is particularly well suited to enabling computational reproducibility.1

They will not fix flawed research design, nor offer a remedy for improper
application of statistical methods.

Those are the difficult, non-automatable things you want skills in.

[1] Python is equally well suited. Julia is an option as well.

54 / 79

Computational Reproducibility
Elements of computational reproducibility:

Shared data

Researchers need your original data to verify and replicate your
work.

Shared code

Your code must be shared to make decisions transparent.

Documentation

The operation of code should be either self-documenting or have
written descriptions to make its use clear.

Version Control

Documents the research process.
Prevents losing work and facilitates sharing.

55 / 79

Levels of Reproducibility
For academic papers, degrees of reproducibility vary:

1. "Read the article"

2. Shared data with documentation

3. Shared data and all code

4. Interactive document

5. Research compendium

6. Docker compendium: Self-contained ecosystem

56 / 79

Interactive Documents
Interactive documents—like R Markdown docs—combine code and text
together into a self-contained document.

Load and process data
Run models
Generate tables and plots in-line with text
In-text values automatically filled in

Interactive documents allow a reader to examine your computational
methods within the document itself; in effect, they are self-documenting.

By re-running the code, they reproduce your results on demand.

Common Platforms:

R: R Markdown (an example of mine)
Python: Jupyter Notebooks

57 / 79

https://clanfear.github.io/birthtiming/inst/paper/paper.html

Research Compendia
A research compendium is a portable, reproducible distribution of an article
or other project.

Research compendia feature:

An interactive document as the foundation

Files organized in a recognizable structure (e.g. an R package)

Clear separation of data, method, and output. Data are read only.

A well-documented or even preserved computational environment (e.g.
Docker)

rrtools by UW's Ben Markwick provides a simplified workflow to
accomplish this in R.

Here is an example compendium of mine.

58 / 79

https://github.com/benmarwick
https://github.com/clanfear/birthtiming

Bookdown
bookdown—which is integrated into rrtools—can generate documents in
the proper format for articles, theses, books, or dissertations.

bookdown provides an accessible alternative to writing for typesetting
and reference management.

You can integrate citations and automate reference page generation using
bibtex files (such as produced by Zotero).

bookdown supports .html output for ease and speed and also renders .pdf
files through for publication-ready documents.

For University of Washington theses and dissertations, consider Ben
Marwick's huskydown package which uses Markdown but renders via a UW
approved template.

LT XA
E

LT XA
E

LT XA
E

59 / 79

https://bookdown.org/yihui/bookdown/
https://github.com/benmarwick/huskydown

Best Practices

Organization and Portability

60 / 79

project/
 readme.md
 data/
 derived/
 processed_data.RData
 raw/
 core_data.csv
 docs/
 paper.Rmd
 syntax/
 functions.R
 models.R

1. There is a clear hierarchy
Written content is in docs
Code is in syntax
Data is in data

2. Naming is uniform
All lower case
Words separated by
underscores

3. Names are self-descriptive

Organization Systems
Organizing research projects is something you either do accidentally—and
badly—or purposefully with some upfront labor.

Uniform organization makes switching between or revisiting projects easier.

I suggest something like the following:

61 / 79

Work�ow

The software you use to write
your code (e.g. RStudio)

The location you store a project

The specific computer you use

The code you ran earlier or
typed into your console

Project

The raw data

The code that operates on your
raw data

The packages you use

The output files or documents

Work�ow versus Project
To summarize Jenny Bryan, one should separate workflow from projects.

Projects should not modify anything outside of the project nor need to be
modified by someone else (or future you) to run.

Projects should be independent of your workflow.

62 / 79

https://www.tidyverse.org/articles/2017/12/workflow-vs-script/

Portability
For research to be reproducible, it must also be portable. Portable software
operates independently of workflow such as fixed file locations.

Do Not:

Use setwd() in scripts or .Rmd files.
Use absolute paths except for fixed, immovable sources (secure data).

read_csv("C:/my_project/data/my_data.csv")
Use install.packages() in script or .Rmd files.
Use rm(list=ls()) anywhere but your console.

Do:

Use RStudio projects (or the here package) to set directories.
Use relative paths to load and save files:

read_csv("./data/my_data.csv")
Load all required packages using library() .
Clear your workspace when closing RStudio.

Set Tools > Global Options... > Save workspace... to Never

63 / 79

https://github.com/jennybc/here_here

Divide and Conquer
Often you do not want to include all code for a project in one .Rmd file:

The code takes too long to knit.
The file is so long it is difficult to read.

There are two ways to deal with this:

1. Use separate .R scripts or .Rmd files which save results from complicated
parts of a project, then load these results in the main .Rmd file.

This is good for loading and cleaning large data.
Also for running slow models.

2. Use source() to run external .R scripts when the .Rmd knits.

This can be used to run large files that aren't impractically slow.
Also good for loading project-specific functions.

64 / 79

The Way of Many Files
I find it beneficial to break projects into many files:

Scripts with specialized functions.
Scripts to load and clean each set of variables.
Scripts to run each set of models and make tables and plots.
A main .Rmd that runs some or all of these to reproduce the entire
project.

Splitting up a project carries benefits:

Once a portion of the project is done and in its own file, it is out of your
way.
If you need to make changes, you don't need to search through huge files.
Entire sections of the project can be added or removed quickly (e.g.
converted to an appendix of an article)
It is the only way to build a proper pipeline for a project.

65 / 79

Pipelines
Professional researchers and teams design projects as a pipeline.

A pipeline is a series of consecutive processing elements (scripts and
functions in R).

Each stage of a pipeline...

1. Has clearly defined inputs and outputs
2. Does not modify its inputs.
3. Produces the exact same output every time it is re-run.

This means...

1. When you modify one stage, you only need to rerun subsequent stages.
2. Different people can work on each stage.
3. Problems are isolated within stages.
4. You can depict your project as a directed graph of dependencies.

66 / 79

Example Pipeline
Every stage (oval) has an unambiguous input and output. Everything that
precedes a given stage is a dependency—something required to run it.

load_data.R

data1.csv data2.csv

full_data
.Rdata

reshape_data.R

mod_data
.Rdata

descriptives.R

models.R

descript_
table
.pdf

model_
table
.pdf

model_
plot
.png

paper.Rmd

paper.pdf

Note: targets` is a great package for managing R research pipelines.

67 / 79

https://docs.ropensci.org/targets/

Tools
Some opinionated advice

68 / 79

On Formats
Avoid "closed" or commercial software and file formats except where
absolutely necessary.

Use open source software and file formats.

It is always better for science:

People should be able to explore your research without buying
commercial software.
You do not want your research to be inaccessible when software is
updated.

It is often just better.

It is usually updated more quickly
It tends to be more secure
It is rarely abandoned

The ideal: Use software that reads and writes raw text.

69 / 79

Text
Writing and formatting documents are two completely separate jobs.

Write first
Format later
Markdown was made for this

Word processors—like Microsoft Word—try to do both at the same time,
usually badly.

They waste time by leading you to format instead of writing.

Find a good modular text editor and learn to use it:

Atom
Sublime (Commercial)
Emacs
Vim

70 / 79

https://en.wikipedia.org/wiki/Markdown
https://atom.io/
https://www.sublimetext.com/

Version Control

71 / 79

Version Control
Version control originates in collaborative software development.

The Idea: All changes ever made to a piece of software are documented, saved
automatically, and revertible.

Version control allows all decisions ever made in a research project to be
documented automatically.

Version control can:

1. Protect your work from destructive changes
2. Simplify collaboration by merging changes
3. Document design decisions
4. Make your research process transparent

72 / 79

Git and GitHub
git is the dominant platform for version control, and GitHub is a free (and
now Microsoft owned) platform for hosting repositories.

Repositories are folders on your computer where all changes are tracked by
Git.

Once satisfied with changes, you "commit" them then "push" them to a remote
repository that stores your project.

Others can copy your project ("pull"), and if you permit, make suggestions for
changes.

Constantly committing and pulling changes automatically generates a running
"history" that documents the evolution of a project.

git is integrated into RStudio under the Tools menu. It requires some setup.1

[1] You can also use the GitHub desktop application.

73 / 79

https://en.wikipedia.org/wiki/Git
https://github.com/
http://happygitwithr.com/
https://desktop.github.com/

GitHub as a CV
Beyond archiving projects and allowing sharing, GitHub also serves as a sort
of curriculum vitae for the programmer.

By allowing others to view your projects, you can display competence in
programming and research.

If you are planning on working in the private sector, an active GitHub profile
will give you a leg up on the competition.

If you are aiming for academia, a GitHub account signals technical
competence and an interest in research transparency.

74 / 79

Wrapping up the Course

75 / 79

What You've Learned
A lot!

How to get data into R from a variety of formats
How to do "data custodian" work to manipulate and clean data
How to make pretty visualizations
How to automate with loops and functions
How to combine text, calculations, plots, and tables into dynamic R
Markdown reports
How to acquire and work with spatial data

76 / 79

What Comes Next?
Statistical inference (e.g. more CSSS courses)

Functions for hypothesis testing, hierarchical/mixed effect models,
machine learning, survey design, etc. are straightforward to use...
once data are clean
Access output by working with list structures (like from regression
models) or using broom and ggeffects

Practice, practice, practice!
Replicate analyses you've done in Excel, SPSS, or Stata
Think about data using dplyr verbs, tidy data principles
R Markdown for reproducibility

More advanced projects
Using version control (git) in RStudio
Interactive Shiny web apps
Write your own functions and put them in a package

77 / 79

Course Plugs
If you...

have no stats background yet - SOC504: Applied Social Statistics
have (only) finished SOC506 - CSSS510: Maximum Likelihood
want to master visualization - CSSS569: Visualizing Data
study events or durations - CSSS544: Event History Analysis 1

want to use network data - CSSS567: Social Network Analysis
want to work with spatial data - CSSS554: Spatial Statistics
want to work with time series - CSSS512: Time Series and Panel Data

[1] Also a great maximum likelihood introduction.

78 / 79

sjPlot Example: Crosstabs

79 / 79

